language-icon Old Web
English
Sign In

Barnes integral

In mathematics, a Barnes integral or Mellin–Barnes integral is a contour integral involving a product of gamma functions. They were introduced by Ernest William Barnes (1908, 1910). They are closely related to generalized hypergeometric series. In mathematics, a Barnes integral or Mellin–Barnes integral is a contour integral involving a product of gamma functions. They were introduced by Ernest William Barnes (1908, 1910). They are closely related to generalized hypergeometric series. The integral is usually taken along a contour which is a deformation of the imaginary axis passing to the right of all poles of factors of the form Γ(a + s) and to the left of all poles of factors of the form Γ(a − s). The hypergeometric function is given as a Barnes integral (Barnes 1908) by see also (Andrews, Askey & Roy 1999, Theorem 2.4.1). This equality can be obtained by moving the contour to the right while picking up the residues at s = 0, 1, 2, ... . for z << 1, and by analytic continuation elsewhere. Given proper convergence conditions, one can relate more general Barnes' integrals and generalized hypergeometric functions pFq in a similar way (Slater 1966). The first Barnes lemma (Barnes 1908) states This is an analogue of Gauss's 2F1 summation formula, and also an extension of Euler's beta integral. The integral in it is sometimes called Barnes's beta integral. The second Barnes lemma (Barnes 1910) states where e = a + b + c − d + 1. This is an analogue of Saalschütz's summation formula. There are analogues of Barnes integrals for basic hypergeometric series, and many of the other results can also be extended to this case (Gasper & Rahman 2004, chapter 4).

[ "Basic hypergeometric series", "Hypergeometric function of a matrix argument" ]
Parent Topic
Child Topic
    No Parent Topic