language-icon Old Web
English
Sign In

Relativistic beaming

Relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light. In an astronomical context, relativistic beaming commonly occurs in two oppositely-directed relativistic jets of plasma that originate from a central compact object that is accreting matter. Accreting compact objects and relativistic jets are invoked to explain the following observed phenomena: x-ray binaries, gamma-ray bursts, and, on a much larger scale, active galactic nuclei (AGN). (Quasars are also associated with an accreting compact object, but are thought to be merely a particular variety of AGN.) Relativistic beaming (also known as Doppler beaming, Doppler boosting, or the headlight effect) is the process by which relativistic effects modify the apparent luminosity of emitting matter that is moving at speeds close to the speed of light. In an astronomical context, relativistic beaming commonly occurs in two oppositely-directed relativistic jets of plasma that originate from a central compact object that is accreting matter. Accreting compact objects and relativistic jets are invoked to explain the following observed phenomena: x-ray binaries, gamma-ray bursts, and, on a much larger scale, active galactic nuclei (AGN). (Quasars are also associated with an accreting compact object, but are thought to be merely a particular variety of AGN.) Beaming affects the apparent brightness of a moving object just as a lighthouse affects the appearance of its light source: the light appears dim or unseen to a ship except when the rotating beacon is directed towards it, when it then appears bright. This so-called lighthouse effect illustrates how important the direction of motion relative to the observer is. Consider a cloud of gas moving relative to the observer and emitting electromagnetic radiation. If the gas is moving towards the observer it will be brighter than if it were at rest, but if moving away it will appear fainter. The magnitude of the effect is illustrated by the AGN jets of the galaxies M87 and 3C 319 (see images at right). M87 has twin jets aimed almost directly towards and away from Earth; the jet moving towards Earth is clearly visible (the long, thin blueish feature in the top image), while the other jet is so much fainter it is not visible. In 3C 319, both jets (labeled in the lower figure) are at roughly right angles to our line of sight and thus, both are visible. The upper jet is actually pointing slightly more in Earth's direction and is therefore brighter. Relativistically moving objects are beamed due to a variety of physical effects. Light aberration causes most of the photons to be emitted along the object's direction of motion. The Doppler effect changes the energy of the photons by red- or blueshifting them. Finally, time intervals as measured by clocks moving alongside the emitting object are different from those measured by an observer on Earth due to time dilation and photon arrival time effects. How all of these effects modify the brightness, or apparent luminosity, of a moving object is determined by the equation describing the relativistic Doppler effect (which is why relativistic beaming is also known as Doppler beaming).

[ "Active galactic nucleus" ]
Parent Topic
Child Topic
    No Parent Topic