language-icon Old Web
English
Sign In

Nociceptin receptor

The nociceptin opioid peptide receptor (NOP), also known as the nociceptin/orphanin FQ (N/OFQ) receptor or kappa-type 3 opioid receptor, is a protein that in humans is encoded by the OPRL1 (opioid receptor-like 1) gene. The nociceptin receptor is a member of the opioid subfamily of G protein-coupled receptors whose natural ligand is the 17 amino acid neuropeptide known as nociceptin (N/OFQ). This receptor is involved in the regulation of numerous brain activities, particularly instinctive and emotional behaviors. Antagonists targeting NOP are under investigation for their role as treatments for depression and Parkinson's disease, whereas NOP agonists have been shown to act as powerful, non-addictive painkillers in non-human primates.4EA3, 5DHG, 5DHH498718389ENSG00000277044ENSG00000125510ENSMUSG00000027584P41146P35377NM_001318855NM_001318923NM_001318924NM_001318925NP_872588NP_001305853NP_001305854NP_035142In 1994, Mollereau et al. cloned a receptor that was highly homologous to the classical opioid receptors (OPs) μ-OR (MOP), κ-OR (KOP), and δ-OR (DOP) that came to be known as the Nociceptin Opioid Peptide receptor (NOP). As these “classical” opioid receptors were identified 30 years earlier in the mid-1960s, the physiological and pharmacological characterization of NOP as well as therapeutic development targeting this receptor remain decades behind. Although research on NOP has blossomed into its own sub-field, the lack of widespread knowledge of NOP's existence means that it is commonly omitted from studies that investigate the OP family, despite its promising role as a therapeutic target.Like most GPCRs, NOP signals through canonical G proteins upon activation. G proteins are heterotrimeric complexes consisting of α, β, and γ subunits. NOP signals through a variety of Gα subtypes that trigger diverse downstream signaling cascades. NOP coupling to Gαi or Gαo subunits leads to an inhibition of adenylyl cyclase (AC) causing an intracellular decrease in cyclic adenosine monophosphate(cAMP) levels, an important second messenger for many signal transduction pathways. NOP acting through Gαi/o pathways has also been shown to activate Phospholipase A2 (PLA2), thereby initiating Mitogen-activated protein kinase (MAPK) signaling cascades. In contrast to classical OPs, NOP also couples to Pertussis toxin (PTX)-insensitive subtypes Gαz, Gα14, and Gα16, as well as potentially to Gα12 and Gαs. Activation of NOP's canonical β-arrestin pathway causes receptor phosphorylation, internalization, and eventual downregulation and recycling. NOP activation also causes indirect inhibition of opioid receptors MOP and KOP, resulting in anti-opioid activity in certain tissues. Additionally, NOP activation leads to the activation of potassium channels and inhibition of calcium channels which collectively inhibit neuronal firing.Recent studies indicate that targeting NOP is a promising alternative route to relieving pain without the deleterious side effects of traditional MOP-activating opioid therapies. In primates, specifically activating NOP through systemic or intrathecal administration induces long-lasting, morphine-comparable analgesia without causing itch, respiratory depression, or the reinforcing effects that lead to addiction in an intravenous self-administration paradigm; thus eliminating all of the serious side-effects of current opioid therapies.NOP agonists are being studied as treatments for heart failure and migraine while nociceptin antagonists such as JTC-801 may have analgesic and antidepressant qualities.This article incorporates text from the United States National Library of Medicine, which is in the public domain.

[ "Antagonist", "Opioid", "Opioid receptor", "Opioid peptide", "JTC-801", "Cebranopadol", "Ro64-6198", "oprl1 gene", "Naloxone benzoylhydrazone" ]
Parent Topic
Child Topic
    No Parent Topic