language-icon Old Web
English
Sign In

Operational definition

An operational definition is the articulation of operationalization (or statement of procedures) used in defining the terms of a process (or set of validation tests) needed to determine the nature of an item or phenomenon (a variable, term, or object) and its properties such as duration, quantity, extension in space, chemical composition, etc. Since the degree of operationalization can vary itself, it can result in a more or less operational definition. The procedures included in definitions should be repeatable by anyone or at least by peers. An operational definition is the articulation of operationalization (or statement of procedures) used in defining the terms of a process (or set of validation tests) needed to determine the nature of an item or phenomenon (a variable, term, or object) and its properties such as duration, quantity, extension in space, chemical composition, etc. Since the degree of operationalization can vary itself, it can result in a more or less operational definition. The procedures included in definitions should be repeatable by anyone or at least by peers. An example of operational definition of the term weight of an object, operationalized to a degree, would be the following: 'weight is the numbers that appear when that object is placed on a weighing scale'. According to it, the weight can be any of the numbers shown on the scale after and including the very moment the object is put on it. Clearly, the inclusion of the moment when one can start reading the numbers on the scale would make it more fully an operational definition. Nonetheless, it is still in contrast to those purely theoretical definitions. Properties described in this manner must be sufficiently accessible so that people other than the definer may independently measure or test for them at will. An operational definition is generally designed to model a theoretical definition.The most operational definition is a process for identification of an object by distinguishing it from its background of empirical experience. The binary version produces either the result that the object exists, or that it doesn't, in the experiential field to which it is applied. The classifier version results in discrimination between what is part of the object and what is not part of it. This is also discussed in terms of semantics, pattern recognition, and operational techniques, such as regression. Operationalize means to put into operation or use. Operational definitions are also used to define system states in terms of a specific, publicly accessible process of preparation or validation testing, which is repeatable at will. For example, 100 degrees Celsius may be crudely defined by describing the process of heating water at sea level until it is observed to boil. An item like a brick, or even a photograph of a brick, may be defined in terms of how it can be made. Likewise, iron may be defined in terms of the results of testing or measuring it in particular ways. Vandervert (1980/1988) described in scientific detail a simple, everyday illustration of an operational definition in terms of making a cake (i.e., its recipe is an operational definition used in a specialized laboratory known as the household kitchen). Similarly, the saying, if it walks like a duck and quacks like a duck, it must be some kind of duck, may be regarded as involving a sort of measurement process or set of tests (see duck test). Despite the controversial philosophical origins of the concept, particularly its close association with logical positivism, operational definitions have undisputed practical applications. This is especially so in the social and medical sciences, where operational definitions of key terms are used to preserve the unambiguous empirical testability of hypothesis and theory. Operational definitions are also important in the physical sciences. The Stanford Encyclopedia of Philosophy entry on scientific realism, written by Richard Boyd, indicates that the modern concept owes its origin in part to Percy Williams Bridgman, who felt that the expression of scientific concepts was often abstract and unclear. Inspired by Ernst Mach, in 1914 Bridgman attempted to redefine unobservable entities concretely in terms of the physical and mental operations used to measure them. Accordingly, the definition of each unobservable entity was uniquely identified with the instrumentation used to define it. From the beginning objections were raised to this approach, in large part around the inflexibility. As Boyd notes, 'In actual, and apparently reliable, scientific practice, changes in the instrumentation associated with theoretical terms are routine, and apparently crucial to the progress of science. According to a 'pure' operationalist conception, these sorts of modifications would not be methodologically acceptable, since each definition must be considered to identify a unique 'object' (or class of objects).' However, this rejection of operationalism as a general project destined ultimately to define all experiential phenomena uniquely did not mean that operational definitions ceased to have any practical use or that they could not be applied in particular cases. The special theory of relativity can be viewed as the introduction of operational definitions for simultaneity of events and of distance, that is, as providing the operations needed to define these terms.

[ "Quantum mechanics", "Social psychology", "Epistemology" ]
Parent Topic
Child Topic
    No Parent Topic