language-icon Old Web
English
Sign In

Eruption column

An eruption column is a cloud of super-heated ash and tephra suspended in gases emitted during an explosive volcanic eruption. The volcanic materials form a column that may rise many kilometers into the air above the vent of the volcano. In the most explosive eruptions, the eruption column may rise over 40 km (25 mi), penetrating the stratosphere. Stratospheric injection of aerosols by volcanoes is a major cause of short-term climate change. An eruption column is a cloud of super-heated ash and tephra suspended in gases emitted during an explosive volcanic eruption. The volcanic materials form a column that may rise many kilometers into the air above the vent of the volcano. In the most explosive eruptions, the eruption column may rise over 40 km (25 mi), penetrating the stratosphere. Stratospheric injection of aerosols by volcanoes is a major cause of short-term climate change. A common occurrence in explosive eruptions is column collapse when the eruption column is or becomes too dense to be lifted high into the sky by air convection, and instead falls down the slopes of the volcano to form pyroclastic flows or surges (although the latter is less dense). On some occasions, if the material isn't dense enough to fall, it may create pyrocumulonimbus clouds. Eruption columns form in explosive volcanic activity, when the high concentration of volatile materials in the rising magma causes it to be disrupted into fine volcanic ash and coarser tephra. The ash and tephra are ejected at speeds of several hundred metres per second, and can rise rapidly to heights of several kilometres, lifted by enormous convection currents.

[ "Pyroclastic rock", "Explosive eruption" ]
Parent Topic
Child Topic
    No Parent Topic