language-icon Old Web
English
Sign In

Rodinia

Rodinia (from the Russian родить, rodít, meaning 'to beget, to give birth', or родина, ródina, meaning 'motherland, birthplace') was a Neoproterozoic supercontinent that assembled 1.1–0.9 billion years ago and broke up 750–633 million years ago.Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named 'Pangaea I'. It was renamed 'Rodinia' by McMenamin & McMenamin 1990 who also were the first to produce a reconstruction and propose a temporal framework for the supercontinent.AfricaAntarcticaAsiaAustraliaEuropeNorth AmericaSouth AmericaAfro-EurasiaAmericaEurasiaOceaniaSubcontinents Rodinia (from the Russian родить, rodít, meaning 'to beget, to give birth', or родина, ródina, meaning 'motherland, birthplace') was a Neoproterozoic supercontinent that assembled 1.1–0.9 billion years ago and broke up 750–633 million years ago.Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named 'Pangaea I'. It was renamed 'Rodinia' by McMenamin & McMenamin 1990 who also were the first to produce a reconstruction and propose a temporal framework for the supercontinent. Rodinia formed at c. 1.23 Ga by accretion and collision of fragments produced by breakup of an older supercontinent, Columbia, assembled by global-scale 2.0–1.8 Ga collisional events. Rodinia broke up in the Neoproterozoic with its continental fragments reassembled to form Pannotia 633–573 million years ago. In contrast with Pannotia, little is known yet about the exact configuration and geodynamic history of Rodinia. Paleomagnetic evidence provides some clues to the paleolatitude of individual pieces of the Earth's crust, but not to their longitude, which geologists have pieced together by comparing similar geologic features, often now widely dispersed. The extreme cooling of the global climate around 717–635 million years ago (the so-called Snowball Earth of the Cryogenian Period) and the rapid evolution of primitive life during the subsequent Ediacaran and Cambrian periods are thought to have been triggered by the breaking up of Rodinia or to a slowing down of tectonic processes. The idea that a supercontinent existed in the early Neoproterozoic arose in the 1970s, when geologists determined that orogens of this age exist on virtually all cratons. Examples are the Grenville orogeny in North America and the Dalslandian orogeny in Europe. Since then, many alternative reconstructions have been proposed for the configuration of the cratons in this supercontinent. Most of these reconstructions are based on the correlation of the orogens on different cratons. Though the configuration of the core cratons in Rodinia is now reasonably well known, recent reconstructions still differ in many details. Geologists try to decrease the uncertainties by collecting geological and paleomagnetical data. Most reconstructions show Rodinia's core formed by the North American craton (the later paleocontinent of Laurentia), surrounded in the southeast with the East European craton (the later paleocontinent of Baltica), the Amazonian craton ('Amazonia') and the West African craton; in the south with the Río de la Plata and São Francisco cratons; in the southwest with the Congo and Kalahari cratons; and in the northeast with Australia, India and eastern Antarctica. The positions of Siberia and North and South China north of the North American craton differ strongly depending on the reconstruction: Little is known about the paleogeography before the formation of Rodinia. Paleomagnetic and geologic data are only definite enough to form reconstructions from the breakup of Rodinia onwards. Rodinia is considered to have formed between 1.3 and 1.23 billion years ago and broke up again before 750 million years ago. Rodinia was surrounded by the superocean geologists are calling Mirovia (from Russian мировой, mirovoy, meaning 'global'). According to J.D.A. Piper, Rodinia is one of two models for the configuration and history of the continental crust in the latter part of Precambrian times. The other is Paleopangea, Piper's own concept. Piper proposes an alternative hypothesis for this era and the previous ones. This idea rejects that Rodinia ever existed as a transient supercontinent subject to progressive break-up in the latter part of Proterozoic times and instead that this time and earlier times were dominated by a single, persistent 'Paleopangaea' supercontinent. As evidence, he suggests an observation that the palaeomagnetic poles from the continental crust assigned to this time conform to a single path between 825 and 633 million years ago and latterly to a near-static position between 750 and 633 million years. This latter solution predicts that break-up was confined to the Ediacaran Period and produced the dramatic environmental changes that characterised the transition between Precambrian and Phanerozoic times.

[ "Rift", "Craton", "Magmatism", "Supercontinent cycle", "Kaigas" ]
Parent Topic
Child Topic
    No Parent Topic