language-icon Old Web
English
Sign In

Transferable belief model

The transferable belief model (TBM) is an elaboration on the Dempster–Shafer theory (DST) of evidence developed by Philippe Smets who proposed his approach as a response to Zadeh’s example against Dempster's rule of combination. In contrast to the original DST the TBM propagates the open-world assumption that relaxes the assumption that all possible outcomes are known. Under the open world assumption Dempster's rule of combination is adapted such that there is no normalization. The underlying idea is that the probability mass pertaining to the empty set is taken to indicate an unexpected outcome, e.g. the belief in a hypothesis outside the frame of discernment. This adaptation violates the probabilistic character of the original DST and also Bayesian inference. Therefore, the authors substituted notation such as probability masses and probability update with terms such as degrees of belief and transfer giving rise to the name of the method: The transferable belief model. The transferable belief model (TBM) is an elaboration on the Dempster–Shafer theory (DST) of evidence developed by Philippe Smets who proposed his approach as a response to Zadeh’s example against Dempster's rule of combination. In contrast to the original DST the TBM propagates the open-world assumption that relaxes the assumption that all possible outcomes are known. Under the open world assumption Dempster's rule of combination is adapted such that there is no normalization. The underlying idea is that the probability mass pertaining to the empty set is taken to indicate an unexpected outcome, e.g. the belief in a hypothesis outside the frame of discernment. This adaptation violates the probabilistic character of the original DST and also Bayesian inference. Therefore, the authors substituted notation such as probability masses and probability update with terms such as degrees of belief and transfer giving rise to the name of the method: The transferable belief model. Lofti Zadeh describes an information fusion problem. A patient has an illness that can be caused by three different factors A, B or C. Doctor 1 says that the patient's illness is very likely to be caused by A (very likely, meaning probability p = 0.95), but B is also possible but not likely (p = 0.05). Doctor 2 says that the cause is very likely C (p = 0.95), but B is also possible but not likely (p = 0.05). How is one to make one's own opinion from this? Bayesian updating the first opinion with the second (or the other way round) implies certainty that the cause is B. Dempster's rule of combination lead to the same result. This can be seen as paradoxical, since although the two doctors point at different causes, A and C, they both agree that B is not likely. (For this reason the standard Bayesian approach is to adopt Cromwell's rule and avoid the use of 0 or 1 as probabilities.) The TBM describes beliefs at two levels: According to the DST, a probability mass function m {displaystyle m} is defined such that:

[ "Sensor fusion", "Dempster–Shafer theory", "Statistics", "Machine learning", "Artificial intelligence" ]
Parent Topic
Child Topic
    No Parent Topic