language-icon Old Web
English
Sign In

Reverse learning

Reverse learning is a neurobiological theory of dreams. In 1983, in a paper published in the science journal Nature, Crick and Mitchison's reverse learning model likened the process of dreaming to a computer in that it was 'off-line' during dreaming or the REM phase of sleep. During this phase, the brain sifts through information gathered throughout the day and throws out all unwanted material. According to the model, we dream in order to forget and this involves a process of 'reverse learning' or 'unlearning'.Suppose one did not have REM, then one would mix things up. That is not necessarily a bad thing — it is the basis of fantasy, imagination, and so forth. Imagination means seeing a connection between two things that are different but which have something in common which you had not noticed before. If one had too much REM, one would predict one would be a rather prosaic person without too much imagination. But the process is not 100% efficient. If one goes on too far, one begins to wipe out everything. Reverse learning is a neurobiological theory of dreams. In 1983, in a paper published in the science journal Nature, Crick and Mitchison's reverse learning model likened the process of dreaming to a computer in that it was 'off-line' during dreaming or the REM phase of sleep. During this phase, the brain sifts through information gathered throughout the day and throws out all unwanted material. According to the model, we dream in order to forget and this involves a process of 'reverse learning' or 'unlearning'. The cortex cannot cope with the vast amount of information received throughout the day without developing 'parasitic' thoughts that would disrupt the efficient organisation of memory. During REM sleep, these unwanted connections in cortical networks are wiped out or damped down by the Crick-Mitchison process making use of impulses bombarding the cortex from sub-cortical areas. The Crick-Mitchison theory is a variant upon Hobson and McCarley's activation-synthesis hypothesis, published in December 1977. Hobson and McCarley hypothesized that a brain stem neuronal mechanism sends pontine-geniculo-occipital (or PGO) waves that automatically activate the mammalian forebrain. By comparing information generated in specific brain areas with information stored in memory, the forebrain synthesizes dreams during REM sleep. In the echidna, a primitive egg-laying mammal that has no REM sleep, there is a very enlarged frontal cortex. Crick and Mitchison argue that this excessive cortical development is necessary to store both adaptive memories and parasitic memories, which in more highly evolved animals are disposed of during REM sleep.

[ "Algorithm", "Developmental psychology", "Neuroscience", "Psychotherapist", "Population" ]
Parent Topic
Child Topic
    No Parent Topic