language-icon Old Web
English
Sign In

Ketogenesis

Ketogenesis is the biochemical process through which organisms produce ketone bodies through breakdown of fatty acids and ketogenic amino acids. This process supplies energy under circumstances such as fasting or caloric restriction to certain organs, particularly the brain, heart and skeletal muscle. Insufficient gluconeogenesis can cause hypoglycemia and excessive production of ketone bodies, ultimately leading to a life-threatening condition known as ketoacidosis. Ketogenesis is the biochemical process through which organisms produce ketone bodies through breakdown of fatty acids and ketogenic amino acids. This process supplies energy under circumstances such as fasting or caloric restriction to certain organs, particularly the brain, heart and skeletal muscle. Insufficient gluconeogenesis can cause hypoglycemia and excessive production of ketone bodies, ultimately leading to a life-threatening condition known as ketoacidosis. Ketone bodies are produced mainly in the mitochondria of liver cells, and synthesis can occur in response to an unavailability of blood glucose, such as during fasting. Other cells, e.g. human astrocytes, are capable of carrying out ketogenesis, but they are not as effective at doing so. Ketogenesis occurs constantly in a healthy individual. Ketogenesis takes place in the setting of low glucose levels in the blood, after exhaustion of other cellular carbohydrate stores, such as glycogen. It can also take place when there is insufficient insulin (e.g. in type 1 (but not 2) diabetes), particularly during periods of 'ketogenic stress' such as intercurrent illness. The production of ketone bodies is then initiated to make available energy that is stored as fatty acids. Fatty acids are enzymatically broken down in β-oxidation to form acetyl-CoA. Under normal conditions, acetyl-CoA is further oxidized by the citric acid cycle (TCA/Krebs cycle) and then by the mitochondrial electron transport chain to release energy. However, if the amounts of acetyl-CoA generated in fatty-acid β-oxidation challenge the processing capacity of the TCA cycle; i.e. if activity in TCA cycle is low due to low amounts of intermediates such as oxaloacetate, acetyl-CoA is then used instead in biosynthesis of ketone bodies via acetoacyl-CoA and β-hydroxy-β-methylglutaryl-CoA (HMG-CoA). Furthermore, since there is only a limited amount of coenzyme A in the liver the production of ketogenesis allows some of the coenzyme to be freed to continue fatty-acid β-oxidation. Depletion of glucose and oxaloacetate can be triggered by fasting, vigorous exercise, high-fat diets or other medical conditions, all of which enhance ketone production. Deaminated amino acids that are ketogenic, such as leucine, also feed TCA cycle, forming acetoacetate & ACoA and thereby produce ketones. Besides its role in the synthesis of ketone bodies, HMG-CoA is also an intermediate in the synthesis of cholesterol, but the steps are compartmentalised. Ketogenesis occurs in the mitochondria, whereas cholesterol synthesis occurs in the cytosol, hence both processes are independently regulated.

[ "Ketone bodies", "Insulin", "HMG-CoA Lyase Deficiency", "Ketone body synthesis", "Ketone body formation", "HMG-CoA lyase" ]
Parent Topic
Child Topic
    No Parent Topic