language-icon Old Web
English
Sign In

Kiloelectronvolt

In physics, the electronvolt (symbol eV, also written electron-volt and electron volt) is a unit of energy equal to exactly 1.602176634×10−19 joules (symbol J) in SI units. In physics, the electronvolt (symbol eV, also written electron-volt and electron volt) is a unit of energy equal to exactly 1.602176634×10−19 joules (symbol J) in SI units. Historically, the electronvolt was devised as a standard unit of measure through its usefulness in electrostatic particle accelerator sciences, because a particle with electric charge q has an energy E = qV after passing through the potential V; if q is quoted in integer units of the elementary charge and the potential in volts, one gets an energy in eV. Like the elementary charge on which it is based, it is not an independent quantity but is equal to 1 J/C √2hα / μ0c0. It is a common unit of energy within physics, widely used in solid state, atomic, nuclear, and particle physics. It is commonly used with the metric prefixes milli-, kilo-, mega-, giga-, tera-, peta- or exa- (meV, keV, MeV, GeV, TeV, PeV and EeV respectively). In some older documents, and in the name Bevatron, the symbol BeV is used, which stands for billion (109) electronvolts; it is equivalent to the GeV. An electronvolt is the amount of kinetic energy gained or lost by a single electron accelerating from rest through an electric potential difference of one volt in vacuum. Hence, it has a value of one volt, 1 J/C, multiplied by the electron's elementary charge e, 1.602176634×10−19 C. Therefore, one electronvolt is equal to 1.602176634×10−19 J. The electronvolt, as opposed to the volt, is not an SI unit. The electronvolt (eV) is a unit of energy whereas the volt (V) is the derived SI unit of electric potential. The SI unit for energy is the joule (J). By mass–energy equivalence, the electronvolt is also a unit of mass. It is common in particle physics, where units of mass and energy are often interchanged, to express mass in units of eV/c2, where c is the speed of light in vacuum (from E = mc2). It is common to simply express mass in terms of 'eV' as a unit of mass, effectively using a system of natural units with c set to 1. The mass equivalent of 1 eV/c2 is For example, an electron and a positron, each with a mass of 0.511 MeV/c2, can annihilate to yield 1.022 MeV of energy. The proton has a mass of 0.938 GeV/c2. In general, the masses of all hadrons are of the order of 1 GeV/c2, which makes the GeV (gigaelectronvolt) a convenient unit of mass for particle physics: The unified atomic mass unit (u), almost exactly 1 gram divided by the Avogadro number, is almost the mass of a hydrogen atom, which is mostly the mass of the proton. To convert to megaelectronvolts, use the formula: In high-energy physics, the electronvolt is often used as a unit of momentum. A potential difference of 1 volt causes an electron to gain an amount of energy (i.e., 1 eV). This gives rise to usage of eV (and keV, MeV, GeV or TeV) as units of momentum, for the energy supplied results in acceleration of the particle.

[ "Ion", "Electron" ]
Parent Topic
Child Topic
    No Parent Topic