language-icon Old Web
English
Sign In

Nephrogenic systemic fibrosis

Nephrogenic systemic fibrosis is a rare syndrome that involves fibrosis of skin, joints, eyes, and internal organs. NSF is caused by exposure to gadolinium in gadolinium-based MRI contrast agents (GBCAs) in patients with impaired kidney function. Epidemiological studies suggest that the incidence of NSF is unrelated to gender or ethnicity and it is not thought to have a genetic basis. After GBCAs were identified as a cause of the disorder in 2006, and screening and prevention measures put in place, it is now considered rare. Nephrogenic systemic fibrosis is a rare syndrome that involves fibrosis of skin, joints, eyes, and internal organs. NSF is caused by exposure to gadolinium in gadolinium-based MRI contrast agents (GBCAs) in patients with impaired kidney function. Epidemiological studies suggest that the incidence of NSF is unrelated to gender or ethnicity and it is not thought to have a genetic basis. After GBCAs were identified as a cause of the disorder in 2006, and screening and prevention measures put in place, it is now considered rare. Clinical features of NSF develop within days to months following exposure to GBCA. The main symptoms are the thickening and hardening of the skin associated with brawny hyperpigmentation, typically presenting in a symmetric fashion. The skin gradually becomes fibrotic and adheres to the underlying fascia. The symptoms initiate distally in the limbs and progress proximally, sometimes involving the trunk. Joint contractures of the fingers, elbows and knees can develop secondary to skin involvement and can severely impair physical function. While skin involvement is on the foreground, the process may involve any organ, e.g., the eye, heart, diaphragm, pleura, pericardium, and kidneys, as well as the lungs and liver. NSF is an iatrogenic disease caused by exposure to gadolinium-based contrast agents used in magnetic resonance imaging. Impaired kidney function reduces the clearance of GBCAs and is the major risk factor for the development of NSF. The etiology or duration of renal failure seems not to be relevant, but NSF risk greatly depends on the residual kidney function. The majority of NSF cases have been identified in patients with stage 5 CKD, but NSF has also developed in patients with stage 4 and 3 CKD, and those with acute kidney injury, even if kidney function subsequently returned to normal following GBCA administration. Thus NSF should be considered as a differential diagnosis in any patient who has been exposed to a GBCA, regardless of the kidney function level. Three GBCAs have been principally implicated in NSF: gadodiamide, gadopentetate dimeglumine, and gadoversetamide, though cases have been reported with majority of GBCAs on the market. High doses in individual GBCA administrations and high cumulative doses of GBCA over the lifetime of patients with renal dysfunction are associated with increased risk of NSF. De-chelation of Gd(III) is responsible for the toxicity associated with gadolinium complexes such as GBCAs, and the toxicity appears to be a consequence of Zn2+, Cu2+, and Ca2+ transmetallation in vivo. This hypothesis is supported by acute toxicity experiments, which demonstrate that despite a 50-fold range of LDse values for four Gd(III) complexes, all become lethally toxic when they release precisely the same quantity of Gd(III). It is also supported by subchronic rodent toxicity experiments, which demonstrate a set of gross and microscopic findings similar to those known to be caused by Zn2+ deficiency. Under the transmetallation hypothesis, we can expect that subtle changes in formulation can affect the intrinsic safety of gadolinium complexes, which is indeed observed. There is no specific imaging finding for NSF, and the diagnosis is a clinicopathological one, based on presentation and histological findings. At the microscopic level, NSF shows a proliferation of dermal fibroblasts and dendritic cells, thickened collagen bundles, increased elastic fibers, and deposits of mucin. More recent case reports have described the presence of sclerotic bodies (also known as elastocollagenous balls) in skin biopsies from NSF patients. While not universally present, this finding is believed to be unique to patients exposed to gadolinium, although not necessarily limited to areas involved by NSF. The differential diagnoses for NSF include diffuse cutaneous or limited cutaneous systemic sclerosis, scleromyxedema, lipodermatosclerosis, scleroedema diabeticorum, graft versus host disease, eosinophilic fasciitis; eosinophilia-myalgia syndrome; porphyria cutanea tarda, and other disorders. The nearly universal absence of facial skin involvement in NSF, presence of yellow plaques on the sclera of the eyes, absence of Raynaud’s phenomenon, and other differences in presentation can aid the proper diagnosis. History of exposure to GBCAs would favor NSF as the differential diagnosis.

[ "Cyclotron", "Brain mapping", "Radiodensity", "Stage (cooking)", "Endocrine gland", "Gadoversetamide", "Gadoversetamida", "Fibrosing disease", "Nephrogenic Fibrosing Dermopathy" ]
Parent Topic
Child Topic
    No Parent Topic