language-icon Old Web
English
Sign In

Calcitriol

Calcitriol is the active form of vitamin D, normally made in the kidney. A manufactured form is used to treat kidney disease with low blood calcium, hyperparathyroidism due to kidney disease, low blood calcium due to hypoparathyroidism, osteoporosis, osteomalacia, and familial hypophosphatemia. It is taken by mouth or by injection into a vein. Calcitriol is the active form of vitamin D, normally made in the kidney. A manufactured form is used to treat kidney disease with low blood calcium, hyperparathyroidism due to kidney disease, low blood calcium due to hypoparathyroidism, osteoporosis, osteomalacia, and familial hypophosphatemia. It is taken by mouth or by injection into a vein. Excessive amount commonly results in weakness, headache, nausea, constipation, urinary tract infections, and abdominal pain. Serious side effects may include high blood calcium and anaphylaxis. Regular blood tests are recommended after the medication is started and when the dose is changed. Calcitriol increases blood calcium (Ca2+) mainly by increasing the uptake of calcium from the intestines. Calcitriol was approved for medical use in the United States in 1978. It is available as a generic medication. A month supply in the United Kingdom costs the NHS about 9.70 £ as of 2019. In the United States the wholesale cost of this amount is about US$27. In 2016 it was the 231st most prescribed medication in the United States with more than two million prescriptions. Calcitriol is prescribed for: Calcitriol has been used in an ointment for the treatment of psoriasis, although the vitamin D analogue calcipotriol (calcipotriene) is more commonly used. Calcitriol has also been given by mouth for the treatment of psoriasis and psoriatic arthritis. Research on the noncalcemic actions of calcitriol and other VDR-ligand analogs and their possible therapeutic applications has been reviewed. The main adverse drug reaction associated with calcitriol therapy is hypercalcemia – early symptoms include: nausea, vomiting, constipation, anorexia, apathy, headache, thirst, pruritus, sweating, and/or polyuria. Compared to other vitamin D compounds in clinical use (cholecalciferol, ergocalciferol), calcitriol has a higher risk of inducing hypercalcemia. However, such episodes may be shorter and easier to treat due to its relatively short half-life. Calcitriol increases blood calcium levels () by: Calcitriol acts in concert with parathyroid hormone (PTH) in all three of these roles. For instance, PTH also indirectly stimulates osteoclasts. However, the main effect of PTH is to increase the rate at which the kidneys excrete inorganic phosphate (Pi), the counterion of Ca2+. The resulting decrease in serum phosphate causes hydroxyapatite (Ca5(PO4)3OH) to dissolve out of bone thus increasing serum calcium. PTH also stimulates the production of calcitriol (see below). Many of the effects of calcitriol are mediated by its interaction with the calcitriol receptor, also called the vitamin D receptor or VDR. For instance, the unbound inactive form of the calcitriol receptor in intestinal epithelial cells resides in the cytoplasm. When calcitriol binds to the receptor, the ligand-receptor complex translocates to the cell nucleus, where it acts as a transcription factor promoting the expression of a gene encoding a calcium binding protein. The levels of the calcium binding protein increase enabling the cells to actively transport more calcium (Ca2+) from the intestine across the intestinal mucosa into the blood.

[ "Vitamin D and neurology", "Calcium", "Increased serum calcitriol", "Vitamin D-dependent rickets type I", "VDR binding", "Falecalcitriol", "VDRE" ]
Parent Topic
Child Topic
    No Parent Topic