language-icon Old Web
English
Sign In

Waste-to-energy plant

A waste-to-energy plant is a waste management facility that combusts wastes to produce electricity. This type of power plant is sometimes called a trash-to-energy, municipal waste incineration, energy recovery, or resource recovery plant. A waste-to-energy plant is a waste management facility that combusts wastes to produce electricity. This type of power plant is sometimes called a trash-to-energy, municipal waste incineration, energy recovery, or resource recovery plant. Modern waste-to-energy plants are very different from the trash incinerators that were commonly used until a few decades ago. Unlike modern ones, those plants usually did not remove hazardous or recyclable materials before burning. These incinerators endangered the health of the plant workers and the nearby residents, and most of them did not generate electricity. Waste-to-energy generation is being increasingly looked at as a potential energy diversification strategy, especially by Sweden, which has been a leader in waste-to-energy production over the past 20 years. The typical range of net electrical energy that can be produced is about 500 to 600 kWh of electricity per ton of waste incinerated. Thus, the incineration of about 2,200 tons per day of waste will produce about 1200 MWh of electrical energy. Most waste-to-energy plants burn municipal solid waste, but some burn industrial waste or hazardous waste. A modern, properly run waste-to-energy plant sorts material before burning it and can co-exist with recycling. The only items that are burned are not recyclable, by design or economically, and are not hazardous. Waste-to-energy plants are similar in their design and equipment with other steam-electric power plants, particularly biomass plants. First, the waste is brought to the facility. Then, the waste is sorted to remove recyclable and hazardous materials. The waste is then stored until it is time for burning. A few plants use gasification, but most combust the waste directly because it is a mature, efficient technology. The waste can be added to the boiler continuously or in batches, depending on the design of the plant. In terms of volume, waste-to-energy plants incinerate 80 to 90 percent of waste. Sometimes, the residue ash is clean enough to be used for some purposes such as raw materials for use in manufacturing cinder blocks or for road construction. In addition, the metals that may be burned are collected from the bottom of the furnace and sold to foundries. Some waste-to-energy plants convert salt water to potable fresh water as a by-product of cooling processes. The typical plant with capacity of 400GWh energy production annually costs about 440 million dollars to build.Waste-to-energy plants may have a significant cost advantage over traditional power options, as the waste-to-energy operator may receive revenue for receiving waste as an alternative to the cost of disposing of waste in a landfill, typically referred to as a 'tipping fee' per ton basis, versus having to pay for the cost of fuel, whereas fuel cost can account for as much as 45 percent of the cost to produce electricity in a coal-powered plant, and 75 percent or more of the cost in a natural gas-powered plant. The National Solid Waste Management Association estimates that the average United States tipping fee for 2002 was $33.70 per ton. Waste-to-energy plants cause lesser air pollution than coal plants, but more than natural gas plants. At the same time, it is carbon-negative: processing waste into biofuel releases considerably less carbon and methane into the air than having waste decay away in landfills or the like. Waste-to-energy plants are designed to reduce the emission of air pollutants in the flue gases exhausted to the atmosphere, such as nitrogen oxides, sulfur oxides and particulates, and to destroy pollutants already present in the waste, using pollution control measures such as baghouses, scrubbers, and electrostatic precipitators. High temperature, efficient combustion, and effective scrubbing and controls can significantly reduce air pollution outputs.

[ "Waste-to-energy" ]
Parent Topic
Child Topic
    No Parent Topic