language-icon Old Web
English
Sign In

Generalized function

In mathematics, generalized functions, or distributions, are objects extending the notion of functions. There is more than one recognized theory. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. In mathematics, generalized functions, or distributions, are objects extending the notion of functions. There is more than one recognized theory. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and more contemporary developments in certain directions are closely related to ideas of Mikio Sato, on what he calls algebraic analysis. Important influences on the subject have been the technical requirements of theories of partial differential equations, and group representation theory. In the mathematics of the nineteenth century, aspects of generalized function theory appeared, for example in the definition of the Green's function, in the Laplace transform, and in Riemann's theory of trigonometric series, which were not necessarily the Fourier series of an integrable function. These were disconnected aspects of mathematical analysis at the time. The intensive use of the Laplace transform in engineering led to the heuristic use of symbolic methods, called operational calculus. Since justifications were given that used divergent series, these methods had a bad reputation from the point of view of pure mathematics. They are typical of later application of generalized function methods. An influential book on operational calculus was Oliver Heaviside's Electromagnetic Theory of 1899. When the Lebesgue integral was introduced, there was for the first time a notion of generalized function central to mathematics. An integrable function, in Lebesgue's theory, is equivalent to any other which is the same almost everywhere. That means its value at a given point is (in a sense) not its most important feature. In functional analysis a clear formulation is given of the essential feature of an integrable function, namely the way it defines a linear functional on other functions. This allows a definition of weak derivative. During the late 1920s and 1930s further steps were taken, basic to future work. The Dirac delta function was boldly defined by Paul Dirac (an aspect of his scientific formalism); this was to treat measures, thought of as densities (such as charge density) like genuine functions. Sergei Sobolev, working in partial differential equation theory, defined the first adequate theory of generalized functions, from the mathematical point of view, in order to work with weak solutions of partial differential equations. Others proposing related theories at the time were Salomon Bochner and Kurt Friedrichs. Sobolev's work was further developed in an extended form by Laurent Schwartz. The realization of such a concept that was to become accepted as definitive, for many purposes, was the theory of distributions, developed by Laurent Schwartz. It can be called a principled theory, based on duality theory for topological vector spaces. Its main rival, in applied mathematics, is to use sequences of smooth approximations (the 'James Lighthill' explanation), which is more ad hoc. This now enters the theory as mollifier theory. This theory was very successful and is still widely used, but suffers from the main drawback that it allows only linear operations. In other words, distributions cannot be multiplied (except for very special cases): unlike most classical function spaces, they are not an algebra. For example it is not meaningful to square the Dirac delta function. Work of Schwartz from around 1954 showed that was an intrinsic difficulty. Some solutions to the multiplication problem have been proposed. One is based on a very simple and intuitive definition a generalized function given by Yu. V. Egorov (see also his article in Demidov's book in the book list below) that allows arbitrary operations on, and between, generalized functions.

[ "Algebra", "Mathematical analysis", "Pure mathematics", "Generating function", "Schwartz kernel theorem", "Colombeau algebra", "Boehmians" ]
Parent Topic
Child Topic
    No Parent Topic