language-icon Old Web
English
Sign In

Daily light integral

Daily light integral (DLI) describes the number of photosynthetically active photons (individual particles of light in the 400-700 nm range) that are delivered to a specific area over a 24-hour period. This variable is particularly useful to describe the light environment of plants. Daily light integral (DLI) describes the number of photosynthetically active photons (individual particles of light in the 400-700 nm range) that are delivered to a specific area over a 24-hour period. This variable is particularly useful to describe the light environment of plants. The daily light integral (DLI) is the number of photosynthetically active photons (photons in the PAR range) accumulated in a square meter over the course of a day. It is a function of photosynthetic light intensity and duration (day length) and is usually expressed as moles of light (mol photons) per square meter (m−2) per day (d−1), or: mol·m−2·d−1. DLI is usually calculated by measuring the photosynthetic photon flux density (PPFD) in μmol·m−2·s−1 (number of photons in the PAR range received in a square meter per second) as it changes throughout the day, and then using that to calculate total estimated number of photons in the PAR range received over a 24-hour period for a specific area. In other words, DLI describes the sum of the per second PPFD measurements during a 24-hour period. If the photosynthetic light intensity stays the same for the entire 24-hour period, DLI in mol m−2 d−1 can be estimated from the instantaneous PPFD from the following equation: μmol m−2 s−1 multiplied by 86,400 (number of seconds in a day) and divided by 106 (number of μmol in a mol). Thus, 1 μmol m−2 s−1 = 0.0864 mol m−2 d−1 if light intensity stays the same for the entire 24 hour period. In the past, biologists have used lux or energy meters to quantify light intensity. They switched to using PPFD when it was realized that the flux of photons in the 400-700 m range is the important factor in driving the photosynthetic process. However, PPFD is usually expressed as the photon flux per second. This is a convenient time scale when measuring short-term changes in photosynthesis in gas exchange systems, but falls short when the light climate for plant growth has to be characterized. First because it does not take into account the length of the day light period, but foremost because light intensity in the field or in glasshouses changes so much diurnally and from day to day. Scientists have tried to solve this by reporting light intensity measured for one or more sunny days at noon, but this is grasping the light level for only a very short period of the day. Daily light integral includes both the diurnal variation and day length, and can also be reported as a mean value per month or over an entire experiment. It has been shown to be better related to plant growth and morphology than PPFD at any moment or day length alone. Outdoors, DLI values vary depending on latitude, time of year, and cloud cover. Occasionally, values over 70 mol·m−2·d−1 can be reached at bright summer days at some locations. Monthly-averaged DLI values range between 20-40 in the tropics, 15-60 at 30° latitude and 1-40 at 60° latitude. For plants growing in the shade of taller plants, such as on the forest floor, DLI may be less than 1 mol·m−2·d−1, even in summer. In greenhouses, 30-70% of the outside light will be absorbed or reflected by the glass and other greenhouse structures. DLI levels in greenhouses therefore rarely exceed 30 mol·m−2·d−1. In growth chambers, values between 10 and 30 mol·m−2·d−1 are most common. DLI affects many plant traits. Although not all plants respond in the same way, some general trends are found: High light increases leaf thickness, either because of an increase in the number of cell layers within the leaf, and/or because of an increase in the cells within a cell layer. The density of a leaf increases a well, and so does the leaf dry mass per area (LMA). There are also more stomata per mm2.

[ "Shoot", "Greenhouse", "photoperiodism", "Mole", "Crop" ]
Parent Topic
Child Topic
    No Parent Topic