language-icon Old Web
English
Sign In

Unruh effect

The Unruh effect (or sometimes Fulling–Davies–Unruh effect) is the prediction that an accelerating observer will observe blackbody radiation where an inertial observer would observe none. In other words, the background appears to be warm from an accelerating reference frame; in layman's terms, a thermometer waved around in empty space, subtracting any other contribution to its temperature, will record a non-zero temperature. For a uniformly accelerating observer, the ground state of an inertial observer is seen as in thermodynamic equilibrium with a non-zero temperature. The Unruh effect (or sometimes Fulling–Davies–Unruh effect) is the prediction that an accelerating observer will observe blackbody radiation where an inertial observer would observe none. In other words, the background appears to be warm from an accelerating reference frame; in layman's terms, a thermometer waved around in empty space, subtracting any other contribution to its temperature, will record a non-zero temperature. For a uniformly accelerating observer, the ground state of an inertial observer is seen as in thermodynamic equilibrium with a non-zero temperature. The Unruh effect was first described by Stephen Fulling in 1973, Paul Davies in 1975 and W. G. Unruh in 1976. It is currently not clear whether the Unruh effect has actually been observed, since the claimed observations are disputed. There is also some doubt about whether the Unruh effect implies the existence of Unruh radiation. The Unruh temperature, derived by William Unruh in 1976, is the effective temperature experienced by a uniformly accelerating detector in a vacuum field. It is given by where ħ is the reduced Planck constant, a is the local acceleration, c is the speed of light, and kB is the Boltzmann constant. Thus, for example, a proper acceleration of 2.47×1020 m·s-2 corresponds approximately to a temperature of 1 K. Conversely, an acceleration of 1 m·s-2 corresponds to a temperature of 4.06×10−21 K. The Unruh temperature has the same form as the Hawking temperature TH = ħg/2πckB of a black hole, which was derived (by Stephen Hawking) independently around the same time. It is, therefore, sometimes called the Hawking–Unruh temperature. Unruh demonstrated theoretically that the notion of vacuum depends on the path of the observer through spacetime. From the viewpoint of the accelerating observer, the vacuum of the inertial observer will look like a state containing many particles in thermal equilibrium—a warm gas. Although the Unruh effect would initially be perceived as counter-intuitive, it makes sense if the word vacuum is interpreted in a specific way. In modern terms, the concept of 'vacuum' is not the same as 'empty space': Space is filled with the quantized fields that make up the universe. Vacuum is simply the lowest possible energy state of these fields. The energy states of any quantized field are defined by the Hamiltonian, based on local conditions, including the time coordinate. According to special relativity, two observers moving relative to each other must use different time coordinates. If those observers are accelerating, there may be no shared coordinate system. Hence, the observers will see different quantum states and thus different vacua.

[ "Quantum", "Black hole", "Acceleration", "Rindler coordinates" ]
Parent Topic
Child Topic
    No Parent Topic