language-icon Old Web
English
Sign In

Acoustic cryptanalysis

Acoustic cryptanalysis is a type of side channel attack that exploits sounds emitted by computers or other devices. Victor Marchetti and John D. Marks eventually negotiated the declassification of CIA acoustic intercepts of the sounds of cleartext printing from encryption machines. Technically this method of attack dates to the time of FFT hardware being cheap enough to perform the task—in this case the late 1960s to mid-1970s. However, using other more primitive means such acoustical attacks were made in the mid-1950s.In 2004, Dmitri Asonov and Rakesh Agrawal of the IBM Almaden Research Center announced that computer keyboards and keypads used on telephones and automated teller machines (ATMs) are vulnerable to attacks based on the sounds produced by different keys. Their attack employed a neural network to recognize the key being pressed. By analyzing recorded sounds, they were able to recover the text of data being entered. These techniques allow an attacker using covert listening devices to obtain passwords, passphrases, personal identification numbers (PINs), and other information entered via keyboards. In 2005, a group of UC Berkeley researchers performed a number of practical experiments demonstrating the validity of this kind of threat.This kind of cryptanalysis can be defeated by generating sounds that are in the same spectrum and same form as keypresses. If sounds of actual keypresses are randomly replayed, it may be possible to totally defeat such kinds of attacks. It is advisable to use at least 5 different recorded variations (36 x 5 = 180 variations) for each keypress to get around the issue of FFT fingerprinting. Alternatively, white noise of a sufficient volume (which may be simpler to generate for playback) will also mask the acoustic emanations of individual keypresses.

[ "Computer security", "Statistics" ]
Parent Topic
Child Topic
    No Parent Topic