language-icon Old Web
English
Sign In

Infrared homing

Infrared homing is a passive weapon guidance system which uses the infrared (IR) light emission from a target to track and follow it. Missiles which use infrared seeking are often referred to as 'heat-seekers', since infrared is radiated strongly by hot bodies. Many objects such as people, vehicle engines and aircraft generate and emit heat, and as such, are especially visible in the infrared wavelengths of light compared to objects in the background. Infrared homing is a passive weapon guidance system which uses the infrared (IR) light emission from a target to track and follow it. Missiles which use infrared seeking are often referred to as 'heat-seekers', since infrared is radiated strongly by hot bodies. Many objects such as people, vehicle engines and aircraft generate and emit heat, and as such, are especially visible in the infrared wavelengths of light compared to objects in the background. Infrared seekers are passive devices, which, unlike radar, provide no indication that they are tracking a target. This makes them suitable for sneak attacks during visual encounters, or over longer ranges when used with a forward looking infrared system or similar cuing system. Heat-seekers are extremely effective: 90% of all United States air combat losses over the past 25 years have been caused by infrared-homing missiles. They are, however, subject to a number of simple countermeasures, most notably dropping flares behind the target to provide false heat sources. This only works if the pilot is aware of the missile and deploys the countermeasures, and the sophistication of modern seekers has rendered them increasingly ineffective. The first IR devices were experimented with in the pre-World War II era. During the war, German engineers were working on heat seeking missiles and proximity fuses, but did not have time to complete development before the war ended. Truly practical designs did not become possible until the introduction of conical scanning and miniaturized vacuum tubes during the war. Anti-aircraft IR systems began in earnest in the late 1940s, but both the electronics and entire field of rocketry was so new that it required considerable development before the first examples entered service in the mid-1950s. These early examples had significant limitations and achieved very low success rates in combat during the 1960s. A new generation developed in the 1970s and 80s made great strides and significantly improved their lethality. The latest examples from the 1990s and on have the ability to attack targets out of their field of view (FOV), behind them, and even pick out vehicles on the ground. The infrared sensor package on the tip or head of a heat-seeking missile is known as the seeker head. The NATO brevity code for an air-to-air infrared-guided missile launch is Fox Two. The ability of certain substances to give off electrons when struck by infrared light had been discovered by the famous Indian polymath Jagadish Chandra Bose in 1901, who saw the effect in galena, known today as lead sulfide, PbS. There was little application at the time, and he allowed his 1904 patent to lapse. In 1917, Theodore Case, as part of his work on what became the Movietone sound system, discovered that a mix of thallium and sulfur was much more sensitive, but was highly unstable electrically and proved to be little use as a practical detector. Nevertheless, it was used for some time by the US Navy as a secure communications system. In 1930 the introduction of the Ag-O-Cs photomultiplier provided the first practical solution to the detection of IR, combining it with a layer of galena as the photocathode. Amplifying the signal emitted by the galena, the photomultiplier produced a useful output that could be used for detection of hot objects at long ranges. This sparked developments in a number of nations, notably the UK and Germany where it was seen as a potential solution to the problem of detecting night bombers. In the UK, research was plodding, with even the main research team at Cavendish Labs expressing their desire to work on other projects, especially after it became clear that radar was going to be a better solution. Nevertheless, Frederick Lindemann, Winston Churchill's favorite on the Tizard Committee, remained committed to IR and became increasing obstructionist to the work of the Committee who was otherwise pressing for radar development. Eventually they dissolved the Committee and reformed, leaving Lindemann off the roster, and filling his position with well known radio expert Edward Victor Appleton. In Germany, radar research was not given nearly the same level of support as in the UK, and competed with IR development throughout the 1930s. IR research was led primarily by Edgar Kutzscher at the University of Berlin working in concert with AEG. By 1940 they had successfully developed one solution; the Spanner Anlage (roughly 'Peeping Tom system') consisting of a detector photomultiplier placed in front of the pilot, and a large searchlight fitted with a filter to limit the output to the IR range. This provided enough light to see the target at short range, and Spanner Anlage was fit to a small number of Messerschmitt Bf 110 and Dornier Do 17 night fighters. These proved largely useless in practice and the pilots complained that the target often only became visible at 200 metres (660 ft), at which point they would have seen it anyway. Only 15 were built and were removed as German airborne radar systems improved though 1942. AEG had been working with the same systems for use on tanks, and deployed a number of models through the war, with limited production of the FG 1250 beginning in 1943. This work culminated in the Zielgerät 1229 Vampir riflescope which was used with the StG 44 assault rifle for night use.

[ "Infrared", "Missile" ]
Parent Topic
Child Topic
    No Parent Topic