language-icon Old Web
English
Sign In

Helium-3

Helium-3 (3He, tralphium, see also helion) is a light, non-radioactive isotope of helium with two protons and one neutron (common helium having two protons and two neutrons). Other than protium (ordinary hydrogen), helium-3 is the only stable isotope of any element with more protons than neutrons. Helium-3 was discovered in 1939. Helium-3 (3He, tralphium, see also helion) is a light, non-radioactive isotope of helium with two protons and one neutron (common helium having two protons and two neutrons). Other than protium (ordinary hydrogen), helium-3 is the only stable isotope of any element with more protons than neutrons. Helium-3 was discovered in 1939. Helium-3 occurs as a primordial nuclide, escaping from the Earth's crust into the atmosphere and into outer space over millions of years. Helium-3 is also thought to be a natural nucleogenic and cosmogenic nuclide, one produced when lithium is bombarded by natural neutrons, which can be released by spontaneous fission and by nuclear reactions with cosmic rays. Some of the helium-3 found in the terrestrial atmosphere is also a relic of atmospheric and underwater nuclear weapons testing. Much speculation has been made over the possibility of helium-3 as a future energy source. Unlike most other nuclear fusion reactions, the fusion of helium-3 atoms releases large amounts of energy without causing the surrounding material to become radioactive. However, the temperatures required to achieve helium-3 fusion reactions are much higher than in traditional fusion reactions, and the process may unavoidably create other reactions that themselves would cause the surrounding material to become radioactive. The abundance of helium-3 is thought to be greater on the Moon than on Earth, having been embedded in the upper layer of regolith by the solar wind over billions of years, though still lower in abundance than in the solar system's gas giants. The existence of helium-3 was first proposed in 1934 by the Australian nuclear physicist Mark Oliphant while he was working at the University of Cambridge Cavendish Laboratory. Oliphant had performed experiments in which fast deuterons collided with deuteron targets (incidentally, the first demonstration of nuclear fusion). Isolation of helium-3 was first accomplished by Luis Alvarez and Robert Cornog in 1939. Helium-3 was thought to be a radioactive isotope until it was also found in samples of natural helium, which is mostly helium-4, taken both from the terrestrial atmosphere and from natural gas wells. Because of its low atomic mass of 3.02 atomic mass units, helium-3 has some physical properties different from those of helium-4, with a mass of 4.00 atomic mass units. Because of the weak, induced dipole–dipole interaction between the helium atoms, their microscopic physical properties are mainly determined by their zero-point energy. Also, the microscopic properties of helium-3 cause it to have a higher zero-point energy than helium-4. This implies that helium-3 can overcome dipole–dipole interactions with less thermal energy than helium-4 can. The quantum mechanical effects on helium-3 and helium-4 are significantly different because with two protons, two neutrons, and two electrons, helium-4 has an overall spin of zero, making it a boson, but with one fewer neutron, helium-3 has an overall spin of one half, making it a fermion. Helium-3 boils at 3.19 K compared with helium-4 at 4.23 K, and its critical point is also lower at 3.35 K, compared with helium-4 at 5.2 K. Helium-3 has less than half the density of helium-4 when it is at its boiling point: 59 g/L compared to 125 g/L of helium-4 at a pressure of one atmosphere. Its latent heat of vaporization is also considerably lower at 0.026 kJ/mol compared with the 0.0829 kJ/mol of helium-4. 3He can be produced by the low temperature fusion of (D-p)2H + 1p → 3He + γ + 4.98 MeV. If the fusion temperature is below that for the helium nuclei to fuse, the reaction produces a high energy alpha particle which quickly acquires an electron producing a stable light helium ion which can be utilized directly as a source of electricity without producing dangerous neutrons.

[ "Isotope", "Nuclear reaction", "Quantum mechanics", "Atomic physics", "Nuclear physics" ]
Parent Topic
Child Topic
    No Parent Topic