language-icon Old Web
English
Sign In

Magnetic core

A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core. A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core. The use of a magnetic core can increase the strength of magnetic field in an electromagnetic coil by a factor of several hundred times what it would be without the core. However, magnetic cores have side effects which must be taken into account. In alternating current (AC) devices they cause energy losses, called core losses, due to hysteresis and eddy currents in applications such as transformers and inductors. 'Soft' magnetic materials with low coercivity and hysteresis, such as silicon steel, or ferrite, are usually used in cores. An electric current through a wire wound into a coil creates a magnetic field through the center of the coil, due to Ampere's circuital law. Coils are widely used in electronic components such as electromagnets, inductors, transformers, electric motors and generators. A coil without a magnetic core is called an 'air core' coil. Adding a piece of ferromagnetic or ferrimagnetic material in the center of the coil can increase the magnetic field by hundreds or thousands of times; this is called a magnetic core. The field of the wire penetrates the core material, magnetizing it, so that the strong magnetic field of the core adds to the field created by the wire. The amount that the magnetic field is increased by the core depends on the magnetic permeability of the core material. Because side effects such as eddy currents and hysteresis can cause frequency-dependent energy losses, different core materials are used for coils used at different frequencies.

[ "Electromagnetic coil", "Utility model", "Compensation winding", "Low tension coil", "magnetic integration", "winding loss", "Inside iron" ]
Parent Topic
Child Topic
    No Parent Topic