language-icon Old Web
English
Sign In

Pedosphere

The pedosphere (from Greek πέδον pedon 'soil' or 'earth' and σφαῖρα sphaira 'sphere') is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. The pedosphere is the skin of the Earth and only develops when there is a dynamic interaction between the atmosphere (air in and above the soil), biosphere (living organisms), lithosphere (unconsolidated regolith and consolidated bedrock) and the hydrosphere (water in, on and below the soil). The pedosphere is the foundation of terrestrial life on Earth. The pedosphere (from Greek πέδον pedon 'soil' or 'earth' and σφαῖρα sphaira 'sphere') is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. The pedosphere is the skin of the Earth and only develops when there is a dynamic interaction between the atmosphere (air in and above the soil), biosphere (living organisms), lithosphere (unconsolidated regolith and consolidated bedrock) and the hydrosphere (water in, on and below the soil). The pedosphere is the foundation of terrestrial life on Earth. The pedosphere acts as the mediator of chemical and biogeochemical flux into and out of these respective systems and is made up of gaseous, mineralic, fluid and biologic components. The pedosphere lies within the Critical Zone, a broader interface that includes vegetation, pedosphere, groundwater aquifer systems, regolith and finally ends at some depth in the bedrock where the biosphere and hydrosphere cease to make significant changes to the chemistry at depth. As part of the larger global system, any particular environment in which soil forms is influenced solely by its geographic position on the globe as climatic, geologic, biologic and anthropogenic changes occur with changes in longitude and latitude. The pedosphere lies below the vegetative cover of the biosphere and above the hydrosphere and lithosphere. The soil forming process (pedogenesis) can begin without the aid of biology but is significantly quickened in the presence of biologic reactions. Soil formation begins with the chemical and/or physical breakdown of minerals to form the initial material that overlies the bedrock substrate. Biology quickens this by secreting acidic compounds (dominantly fulvic acids) that help break rock apart. Particular biologic pioneers are lichen, mosses and seed bearing plants, but many other inorganic reactions take place that diversify the chemical makeup of the early soil layer. Once weathering and decomposition products accumulate, a coherent soil body allows the migration of fluids both vertically and laterally through the soil profile, causing ion exchange between solid, fluid and gaseous phases. As time progresses, the bulk geochemistry of the soil layer will deviate away from the initial composition of the bedrock and will evolve to a chemistry that reflects the type of reactions that take place in the soil. The primary conditions for soil development are controlled by the chemical composition of the rock that the soil will eventually be forming on. Rock types that form the base of the soil profile are often either sedimentary (carbonate or siliceous), igneous or metaigneous (metamorphosed igneous rocks) or volcanic and metavolcanic rocks. The rock type and the processes that lead to its exposure at the surface are controlled by the regional geologic setting of the specific area under study, which revolve around the underlying theory of plate tectonics, subsequent deformation, uplift, subsidence and deposition. Metaigneous and metavolcanic rocks form the largest component of cratons and are high in silica. Igneous and volcanic rocks are also high in silica but with non-metamorphosed rock, weathering becomes faster and the mobilization of ions is more widespread. Rocks high in silica produce silicic acid as a weathering product. There are few rock types that lead to localized enrichment of some of the biologically limiting elements like phosphorus (P) and nitrogen (N). Phosphatic shale (<15% P2O5) and phosphorite (>15% P2O5) form in anoxic deep water basins that preserve organic material. Greenstone (metabasalt), phyllite and schist release up to 30-50% of the nitrogen pool. Thick successions of carbonate rocks are often deposited on craton margins during sea level rise. The widespread dissolution of carbonate and evaporate minerals leads to elevated levels of Mg2+, HCO3−, Sr2+, Na+, Cl− and SO42− ions in aqueous solution. The process of soil formation is dominated by chemical weathering of silicate minerals, aided by acidic products of pioneering plants and organisms as well as carbonic acid inputs from the atmosphere. Carbonic acid is produced in the atmosphere and soil layers through the carbonation reaction. H 2 O + C O 2 ⟶ H + + H C O 3 − ⟶ H 2 C O 3 {displaystyle mathrm {H_{2}O+CO_{2}longrightarrow H^{+}+HCO_{3}^{-}longrightarrow H_{2}CO_{3}} } This is the dominant form of chemical weathering and aides in the breakdown of carbonate minerals like calcite and dolomite and silicate minerals like feldspar. The breakdown of the Na-feldspar, albite, by carbonic acid to form kaolinite clay is as follows: 2   N a A l S i 3 O 8 + 2   H 2 C O 3 + 9   H 2 O ⟶ 2   N a + + 2   H C O 3 − + 4   H 4 S i O 4 + A l 2 S i 2 O 5 ( O H ) 4 {displaystyle mathrm {2 NaAlSi_{3}O_{8}+2 H_{2}CO_{3}+9 H_{2}Olongrightarrow 2 Na^{+}+2 HCO_{3}^{-}+4 H_{4}SiO_{4}+Al_{2}Si_{2}O_{5}(OH)_{4}} }

[ "Biosphere", "Hydrosphere", "Soil water" ]
Parent Topic
Child Topic
    No Parent Topic