language-icon Old Web
English
Sign In

Physical security

Physical security describes security measures that are designed to deny unauthorized access to facilities, equipment and resources and to protect personnel and property from damage or harm (such as espionage, theft, or terrorist attacks). Physical security involves the use of multiple layers of interdependent systems which include CCTV surveillance, security guards, protective barriers, locks, access control protocols, and many other techniques. Physical security describes security measures that are designed to deny unauthorized access to facilities, equipment and resources and to protect personnel and property from damage or harm (such as espionage, theft, or terrorist attacks). Physical security involves the use of multiple layers of interdependent systems which include CCTV surveillance, security guards, protective barriers, locks, access control protocols, and many other techniques. Physical security systems for protected facilities are generally intended to: It is up to security designers, architects and analysts to balance security controls against risks, taking into account the costs of specifying, developing, testing, implementing, using, managing, monitoring and maintaining the controls, along with broader issues such as aesthetics, human rights, health and safety, and societal norms or conventions. Physical access security measures that are appropriate for a high security prison or a military site may be inappropriate in an office, a home or a vehicle, although the principles are similar. The goal of deterrence methods is to convince potential attackers that a successful attack is unlikely due to strong defenses. The initial layer of security for a campus, building, office, or other physical space uses crime prevention through environmental design to deter threats. Some of the most common examples are also the most basic: warning signs or window stickers, fences, vehicle barriers, vehicle height-restrictors, restricted access points, security lighting and trenches. Physical barriers such as fences, walls, and vehicle barriers act as the outermost layer of security. They serve to prevent, or at least delay, attacks, and also act as a psychological deterrent by defining the perimeter of the facility and making intrusions seem more difficult. Tall fencing, topped with barbed wire, razor wire or metal spikes are often emplaced on the perimeter of a property, generally with some type of signage that warns people not to attempt to enter. However, in some facilities imposing perimeter walls/fencing will not be possible (e.g. an urban office building that is directly adjacent to public sidewalks) or it may be aesthetically unacceptable (e.g. surrounding a shopping center with tall fences topped with razor wire); in this case, the outer security perimeter will be defined as the walls/windows/doors of the structure itself. Barriers are typically designed to defeat defined threats. This is part of building codes as well as fire codes. Apart from external threats, there are internal threats of fire, smoke migration as well as sabotage. The National Building Code of Canada, as an example, indicates the need to defeat external explosions with the building envelope, where they are possible, such as where large electrical transformers are located close to a building. High-voltage transformer fire barriers can be examples of walls designed to simultaneously defeat fire, ballistics and fragmentation as a result of transformer ruptures, as well as incoming small weapons fire. Similarly, buildings may have internal barriers to defeat weapons as well as fire and heat. An example would be a counter at a police station or embassy, where the public may access a room but talk through security glass to employees in behind. If such a barrier aligns with a fire compartment as part of building code compliance, then multiple threats must be defeated simultaneously, which must be considered in the design. Another major form of deterrence that can be incorporated into the design of facilities is natural surveillance, whereby architects seek to build spaces that are more open and visible to security personnel and authorized users, so that intruders/attackers are unable to perform unauthorized activity without being seen. An example would be decreasing the amount of dense, tall vegetation in the landscaping so that attackers cannot conceal themselves within it, or placing critical resources in areas where intruders would have to cross over a wide, open space to reach them (making it likely that someone would notice them). Security lighting is another effective form of deterrence. Intruders are less likely to enter well-lit areas for fear of being seen. Doors, gates, and other entrances, in particular, should be well lit to allow close observation of people entering and exiting. When lighting the grounds of a facility, widely distributed low-intensity lighting is generally superior to small patches of high-intensity lighting, because the latter can have a tendency to create blind spots for security personnel and CCTV cameras. It is important to place lighting in a manner that makes it difficult to tamper with (e.g. suspending lights from tall poles), and to ensure that there is a backup power supply so that security lights will not go out if the electricity is cut off.

[ "Computer security", "Operating system" ]
Parent Topic
Child Topic
    No Parent Topic