language-icon Old Web
English
Sign In

RhoC

1Z2C, 2GCN, 2GCO, 2GCP38911853ENSG00000155366ENSMUSG00000002233P08134Q5JR06Q62159NM_175744NM_001042678NM_001042679NM_001291859NM_007484NP_001036143NP_001036144NP_786886NP_001278788NP_031510RhoC (Ras homolog gene family, member C) is a small (~21 kDa) signaling G protein (more specifically a GTPase), and is a member of the Rac subfamily of the family Rho family of GTPases. It is encoded by the gene RHOC.1a2b: HUMAN RHOA COMPLEXED WITH GTP ANALOGUE1cc0: CRYSTAL STRUCTURE OF THE RHOA.GDP-RHOGDI COMPLEX1cxz: CRYSTAL STRUCTURE OF HUMAN RHOA COMPLEXED WITH THE EFFECTOR DOMAIN OF THE PROTEIN KINASE PKN/PRK11dpf: CRYSTAL STRUCTURE OF A MG-FREE FORM OF RHOA COMPLEXED WITH GDP1ftn: CRYSTAL STRUCTURE OF THE HUMAN RHOA/GDP COMPLEX1kmq: Crystal Structure of a Constitutively Activated RhoA Mutant (Q63L)1lb1: Crystal Structure of the Dbl and Pleckstrin homology domains of Dbs in complex with RhoA1ow3: Crystal Structure of RhoA.GDP.MgF3-in Complex with RhoGAP1s1c: Crystal structure of the complex between the human RhoA and Rho-binding domain of human ROCKI1tx4: RHO/RHOGAP/GDP(DOT)ALF4 COMPLEX1x86: Crystal Structure of the DH/PH domains of Leukemia-associated RhoGEF in complex with RhoA1xcg: Crystal Structure of Human RhoA in complex with DH/PH fragment of PDZRHOGEF1z2c: Crystal structure of mDIA1 GBD-FH3 in complex with RhoC-GMPPNP2gcn: Crystal structure of the human RhoC-GDP complex2gco: Crystal structure of the human RhoC-GppNHp complex2gcp: Crystal structure of the human RhoC-GSP complex RhoC (Ras homolog gene family, member C) is a small (~21 kDa) signaling G protein (more specifically a GTPase), and is a member of the Rac subfamily of the family Rho family of GTPases. It is encoded by the gene RHOC. It is prenylated at its C-terminus, and localizes to the cytoplasm and plasma membrane. It is thought to be important in cell locomotion. It cycles between inactive GDP-bound and active GTP-bound states and function as molecular switches in signal transduction cascades. Rho proteins promote reorganization of the actin cytoskeleton and regulate cell shape and motility. RhoC can activate formins such as mDia1 and FMNL2 to remodel the cytoskeleton. Overexpression of RhoC is associated with cell proliferation and causing tumors to become malignant. It causes degradation and reconstruction of the Extracellular Matrix (ECM) which helps cells escape the tissue they are currently in. It enhances cell motility giving it the ability to become invasive. It has been found to have a direct relationship to advanced tumor stage and metastasis, with increases in stage being related to increases in RhoC expression. RhoC-deficient mice can still develop tumors but these fail to metastasize, arguing that RhoC is essential for metastasis.It has also been found to enhance the creation of angiogenic factors such as VEGF, which is necessary for a tumor to become malignant. In a study by Vega, RhoC was knocked out which resulted in cells spreading out wide in all directions. When RhoC was disabled, the cell's abilities to move in a specific direction and migrate was impaired. It also reduced the cell's speed of movement, because it was difficult, and sometimes impossible, to polarize the cell.

[ "RHOA", "Metastasis", "GTPase", "RHOC Protein", "RhoC GTPase", "RhoC GTP-Binding Protein" ]
Parent Topic
Child Topic
    No Parent Topic