language-icon Old Web
English
Sign In

Electron-beam technology

Since the mid-20th century, electron-beam technology has provided the basis for a variety of novel and specialized applications in semiconductor manufacturing, microelectromechanical systems, nanoelectromechanical systems, and microscopy. Since the mid-20th century, electron-beam technology has provided the basis for a variety of novel and specialized applications in semiconductor manufacturing, microelectromechanical systems, nanoelectromechanical systems, and microscopy. Free electrons in a vacuum can be manipulated by electric and magnetic fields to form a fine beam. Where the beam collides with solid-state matter, electrons are converted into heat or kinetic energy. This concentration of energy in a small volume of matter can be precisely controlled electronically, which brings many advantages. The rapid increase of temperature at the location of impact can quickly melt a target material. In extreme working conditions, the rapid temperature increase can even lead to evaporation, making an electron beam an excellent tool in heating applications, such as welding. Electron beam technology is used in cable-isolation treatment, in electron lithography of sub-micrometer and nano-dimensional images, in microelectronics for electron-beam curing of color printing and for the fabrication and modification of polymers, including liquid-crystal films, among many other applications. In a vacuum, the electron beam provides a source of heat that can melt or modify any material. This source of heat or phase transformation is absolutely sterile due to the vacuum and scull of solidified metal around the cold copper crucible walls. This ensures that the purest materials can be produced and refined in electron-beam vacuum furnaces. Rare and refractory metals can be produced or refined in small-volume vacuum furnaces. For mass production of steels, large furnaces with capacity measured in metric tons and electron-beam power in megawatts exist in industrialized countries.

[ "Cathode ray" ]
Parent Topic
Child Topic
    No Parent Topic