language-icon Old Web
English
Sign In

Flight control surfaces

Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude. Aircraft flight control surfaces are aerodynamic devices allowing a pilot to adjust and control the aircraft's flight attitude. Development of an effective set of flight control surfaces was a critical advance in the development of aircraft. Early efforts at fixed-wing aircraft design succeeded in generating sufficient lift to get the aircraft off the ground, but once aloft, the aircraft proved uncontrollable, often with disastrous results. The development of effective flight controls is what allowed stable flight. This article describes the control surfaces used on a fixed-wing aircraft of conventional design. Other fixed-wing aircraft configurations may use different control surfaces but the basic principles remain. The controls (stick and rudder) for rotary wing aircraft (helicopter or autogyro) accomplish the same motions about the three axes of rotation, but manipulate the rotating flight controls (main rotor disk and tail rotor disk) in a completely different manner. The Wright brothers are credited with developing the first practical control surfaces. It is a main part of their patent on flying. Unlike modern control surfaces, they used wing warping. In an attempt to circumvent the Wright patent, Glenn Curtiss made hinged control surfaces, the same type of concept first patented some four decades earlier in the United Kingdom. Hinged control surfaces have the advantage of not causing stresses that are a problem of wing warping and are easier to build into structures. An aircraft is free to rotate around three axes that are perpendicular to each other and intersect at its center of gravity (CG). To control position and direction a pilot must be able to control rotation about each of them. The transverse axis, also known as lateral axis, passes through an aircraft from wingtip to wingtip. Rotation about this axis is called pitch. Pitch changes the vertical direction that the aircraft's nose is pointing. The elevators are the primary control surfaces for pitch. The longitudinal axis passes through the aircraft from nose to tail. Rotation about this axis is called roll. The angular displacement about this axis is called bank. The pilot changes bank angle by increasing the lift on one wing and decreasing it on the other. This differential lift causes rotation around the longitudinal axis. The ailerons are the primary control of bank. The rudder also has a secondary effect on bank. The vertical axis passes through an aircraft from top to bottom. Rotation about this axis is called yaw. Yaw changes the direction the aircraft's nose is pointing, left or right. The primary control of yaw is with the rudder. Ailerons also have a secondary effect on yaw.

[ "Aerodynamics", "Spoileron", "Yoke (aeronautics)" ]
Parent Topic
Child Topic
    No Parent Topic