language-icon Old Web
English
Sign In

Clarifier

Before the water enters the clarifier, coagulation and flocculation reagents, such as polyelectrolytes and ferric sulfate, can be added. These reagents cause finely suspended particles to clump together and form larger and denser particles, called flocs, that settle more quickly and stably. This allows the separation of the solids in the clarifier to occur more efficiently and easily; aiding in the conservation of energy. Isolating the particle components first using these processes may reduce the volume of downstream water treatment processes like filtration. Water being purified for human consumption, is treated with floculation reagents, then sent to the clarifier where removal of the flocculated coagulate occurs producing clarified water. The clarifier works by permitting the heavier and larger particles to settle to the bottom of the clarifier. The particles then form a bottom layer of sludge requiring regular removal and disposal. Clarified water then proceeds through several more steps before being sent for storage and use. Sedimentation tanks have been used to treat wastewater for millennia. Primary treatment of sewage is removal of floating and settleable solids through sedimentation. Primary clarifiers reduce the content of suspended solids and pollutants embedded in those suspended solids.:5–9 Because of the large amount of reagent necessary to treat domestic wastewater, preliminary chemical coagulation and flocculation are generally not used, remaining suspended solids being reduced by following stages of the system. However, coagulation and flocculation can be used for building a compact treatment plant (also called a 'package treatment plant'), or for further polishing of the treated water. Sedimentation tanks called secondary clarifiers remove flocs of biological growth created in some methods of secondary treatment including activated sludge, trickling filters and rotating biological contactors.:13 Methods used to treat suspended solids in mining wastewater include sedimentation and floc blanket clarification and filtration. Sedimentation is used by Rio Tinto Minerals to refine raw ore into refined borates. After dissolving the ore, the saturated borate solution is pumped into a large settling tank. Borates float on top of the liquor while rock and clay settles to the bottom. Although sedimentation might occur in tanks of other shapes, removal of accumulated solids is easiest with conveyor belts in rectangular tanks or with scrapers rotating around the central axis of circular tanks. Mechanical solids removal devices move as slowly as practical to minimize resuspension of settled solids. Tanks are sized to give water an optimal residence time within the tank. Economy favors using small tanks; but if flow rate through the tank is too high, most particles will not have sufficient time to settle, and will be carried with the treated water. Considerable attention is focused on reducing water inlet and outlet velocities to minimize turbulence and promote effective settling throughout available tank volume. Baffles are used to prevent fluid velocities at the tank entrance from extending into the tank; and overflow weirs are used to uniformly distribute flow from liquid leaving the tank over a wide area of the surface to minimize resuspension of settling particles. Tube settlers are commonly used in rectangular clarifiers to increase the settling capacity by reducing the vertical distance a suspended particle must travel. High efficiency tube settlers use a stack of parallel tubes, rectangles or flat pieces separated by a few inches (several centimeters) and sloping upwards in the direction of flow. This structure creates a large number of narrow parallel flow pathways encouraging uniform laminar flow as modeled by Stokes' law. These structures work in two ways:

[ "Chromatography", "Environmental engineering", "Waste management", "Utility model", "Lamella clarifier" ]
Parent Topic
Child Topic
    No Parent Topic