language-icon Old Web
English
Sign In

1,4-Benzoquinone

1,4-Benzoquinone, commonly known as para-quinone, is a chemical compound with the formula C6H4O2. In a pure state, it forms bright-yellow crystals with a characteristic irritating odor, resembling that of chlorine, bleach, and hot plastic or formaldehyde. This six-membered ring compound is the oxidized derivative of 1,4-hydroquinone. The molecule is multifunctional: it exhibits properties of a ketone, forming an oxime; an oxidant, forming the dihydroxy derivative; and an alkene, undergoing addition reactions, especially those typical for α,β-unsaturated ketones. 1,4-Benzoquinone is sensitive toward both strong mineral acids and alkali, which cause condensation and decomposition of the compound. 1,4-Benzoquinone is prepared industrially by oxidation of hydroquinone, which can be obtained by several routes. One route involves oxidation of diisopropylbenzene and the Hock rearrangement. The net reaction can be represented as follows: The reaction proceeds via the bis(hydroperoxide) and the hydroquinone. Acetone is a coproduct. Another major process involves the direct hydroxylation of phenol by acidic hydrogen peroxide:C6H5OH + H2O2 → C6H4(OH)2 + H2OBoth hydroquinone and catechol are produced. Subsequent oxidation of the hydroquinone gives the quinone. Quinone was originally prepared industrially by oxidation of aniline, for example by manganese dioxide. This method is mainly practiced in PRC where environmental regulations are more relaxed. Oxidation of hydroquinone is facile. One such method makes use of hydrogen peroxide as the oxidizer and iodine or an iodine salt as a catalyst for the oxidation occurring in a polar solvent; e.g. isopropyl alcohol. When heated to near its melting point, 1,4-benzoquinone sublimes, even at atmospheric pressure, allowing for an effective purification. Impure samples are often dark-colored due to the presence of quinhydrone, a dark green 1:1 charge-transfer complex of quinone with hydroquinone. Benzoquinone is a planar molecule with localized, alternating C=C, C=O, and C–C bonds. Reduction gives the semiquinone anion C6H4O2−}, which adopts a more delocalized structure. Further reduction coupled to protonation gives the hydroquinone, wherein the C6 ring is fully delocalized.

[ "Quinone" ]
Parent Topic
Child Topic
    No Parent Topic