language-icon Old Web
English
Sign In

Low-carbon power

Low-carbon power comes from processes or technologies that produce power with substantially lower amounts of carbon dioxide emissions than is emitted from conventional fossil fuel power generation. It includes low carbon power generation sources such as wind power, solar power, hydropower and nuclear power. The term largely excludes conventional fossil fuel plant sources, and is only used to describe a particular subset of operating fossil fuel power systems, specifically, those that are successfully coupled with a flue gas carbon capture and storage (CCS) system.The collective LCA literature indicates that life cycle GHG emissions from nuclear power are only a fraction of traditional fossil sources and comparable to renewable technologies.Harmonization decreased the median estimate for all LWR technology categories so that the medians of BWRs, PWRs, and all LWRs are similar, at approximately 12 g CO2-eq/kWh Low-carbon power comes from processes or technologies that produce power with substantially lower amounts of carbon dioxide emissions than is emitted from conventional fossil fuel power generation. It includes low carbon power generation sources such as wind power, solar power, hydropower and nuclear power. The term largely excludes conventional fossil fuel plant sources, and is only used to describe a particular subset of operating fossil fuel power systems, specifically, those that are successfully coupled with a flue gas carbon capture and storage (CCS) system. Over the past 30 years, significant findings regarding global warming highlighted the need to curb carbon emissions. From this, the idea for low-carbon power was born. The Intergovernmental Panel on Climate Change (IPCC), established by the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP) in 1988, set the scientific precedence for the introduction of low-carbon power. The IPCC has continued to provide scientific, technical and socio-economic advice to the world community, through its periodic assessment reports and special reports. Internationally, the most prominent early step in the direction of low carbon power was the signing of the Kyoto Protocol, which came into force on February 16, 2005, under which most industrialized countries committed to reduce their carbon emissions. The historical event set the political precedence for introduction of low-carbon power technology. On a social level, perhaps the biggest factor contributing to the general public’s awareness of climate change and the need for new technologies, including low carbon power, came from the documentary An Inconvenient Truth, which clarified and highlighted the problem of global warming. The Swedish utility Vattenfall did a study of full life cycle emissions of nuclear, hydro, coal, gas, peat and wind which the utility uses to produce electricity. The result of the study concluded that the grams of CO2 per kWh of electricity by source are nuclear (5), hydroelectric (9), wind (15), natural gas (503), peat (636), coal (781). A 2008 meta analysis, 'Valuing the use Gas Emissions from Nuclear Power: A Critical Survey,' by Benjamin K. Sovacool, analysed 103 life cycle studies of greenhouse gas-equivalent emissions for nuclear power plants. The studies surveyed included the 1997 Vattenfall comparative emissions study, among others. Sovacool's analysis calculated that the mean value of emissions over the lifetime of a nuclear power plant is 66 g/kWh. Comparative results for wind power, hydroelectricity, solar thermal power, and solar photovoltaic, were 9-10 g/kWh, 10-13 g/kWh, 13 g/kWh and 32 g/kWh respectively. Sovacool's analysis has been criticized for poor methodology and data selection. A 2012 life cycle assessment (LCA) review by Yale University said that 'depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO2-eq/kWh by 2050.' It stated:.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 40px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0} It added that for the most common category of reactors, the Light water reactor (LWR): There are many options for lowering current levels of carbon emissions. Some options, such as wind power and solar power, produce low quantities of total life cycle carbon emissions, using entirely renewable sources. Other options, such as nuclear power, produce a comparable amount of carbon dioxide emissions as renewable technologies in total life cycle emissions, but consume non-renewable, but sustainable materials (uranium). The term low-carbon power can also include power that continues to utilize the world’s natural resources, such as natural gas and coal, but only when they employ techniques that reduce carbon dioxide emissions from these sources when burning them for fuel, such as the, as of 2012, pilot plants performing Carbon capture and storage.

[ "Electricity generation", "Electric power system", "Renewable energy", "Electricity", "Carbon" ]
Parent Topic
Child Topic
    No Parent Topic