language-icon Old Web
English
Sign In

Biophotonics

The term biophotonics denotes a combination of biology and photonics, with photonics being the science and technology of generation, manipulation, and detection of photons, quantum units of light. Photonics is related to electronics and photons. Photons play a central role in information technologies, such as fiber optics, the way electrons do in electronics. The term biophotonics denotes a combination of biology and photonics, with photonics being the science and technology of generation, manipulation, and detection of photons, quantum units of light. Photonics is related to electronics and photons. Photons play a central role in information technologies, such as fiber optics, the way electrons do in electronics. Biophotonics can also be described as the 'development and application of optical techniques, particularly imaging, to the study of biological molecules, cells and tissue'. One of the main benefits of using the optical techniques which make up biophotonics is that they preserve the integrity of the biological cells being examined. Biophotonics has therefore become the established general term for all techniques that deal with the interaction between biological items and photons. This refers to emission, detection, absorption, reflection, modification, and creation of radiation from biomolecular, cells, tissues, organisms, and biomaterials. Areas of application are life science, medicine, agriculture, and environmental science.Similar to the differentiation between 'electric' and 'electronics,' a difference can be made between applications such as Therapy and surgery, which use light mainly to transfer energy, and applications such as diagnostics, which use light to excite matter and to transfer information back to the operator. In most cases, the term biophotonics refers to the latter type of application. Applications Biophotonics is an interdisciplinary field involving the interaction between electromagnetic radiation and biological materials including: tissues, cells, sub-cellular structures, and molecules in living organisms. Recent biophotonics research has created new applications for clinical diagnostics and therapies involving fluids, cells, and tissues. These advances are allowing scientists and physicians opportunities for superior, non-invasive diagnostics for vascular and blood flow, as well as tools for better examination of skin lesions. In addition to new diagnostic tools, the advancements in biophotonics research have provided new photothermal, photodynamic, and tissue therapies. Dermatology By observing the numerous and complex interactions between light and biological materials, the field of biophotonics presents a unique set of diagnostic techniques that medical practitioners can utilize. Biophotonic imaging provides the field of dermatology with the only non-invasive technique available for diagnosing skin cancers. Traditional diagnostic procedures for skin cancers involve visual assessment and biopsy, but a new Laser Induced Fluorescence spectroscopy technique allow dermatologists to compare spectrographs of a patient's skin with spectrographs known to correspond with malignant tissue. This provides doctors with earlier diagnosis and treatment options. “Among optical techniques, an emerging imaging technology based on laser scanning, the optical coherence tomography or OCT imaging is considered to be a useful tool to differentiate healthy from malignant skin tissue.” The information is immediately accessible and eliminates the need for skin excision. This also eliminates the need for the skin samples to be processed in a lab which reduces labor costs and processing time. Furthermore, these optical imaging technologies can be used during traditional surgical procedures to determine the boundaries of lesions to ensure that the entirety of the diseased tissue is removed. This is accomplished by exposing nanoparticles that have been dyed with a fluorescing substance to the acceptable light photons. Nanoparticles that are functionalized with fluorescent dyes and marker proteins will congregate in a chosen tissue type. When the particles are exposed to wavelengths of light that correspond to the fluorescent dye, the unhealthy tissue glows. This allows for the attending surgeon to quickly visually identify boundaries between healthy and unhealthy tissue, resulting in less time on the operating table and higher patient recovery. “Using dielectrophoretic microarray devices, nanoparticles and DNA biomarkers were rapidly isolated and concentrated onto specific microscopic locations where they were easily detected by epifluorescent microscopy”

[ "Photonics", "Spectroscopy", "Quantum optics", "Optical fiber", "Laser" ]
Parent Topic
Child Topic
    No Parent Topic