language-icon Old Web
English
Sign In

Biomarkers of aging

Biomarkers of aging are biomarkers that could predict functional capacity at some later age better than will chronological age. Stated another way, biomarkers of aging would give the true 'biological age', which may be different from the chronological age. Biomarkers of aging are biomarkers that could predict functional capacity at some later age better than will chronological age. Stated another way, biomarkers of aging would give the true 'biological age', which may be different from the chronological age. Validated biomarkers of aging would allow for testing interventions to extend lifespan, because changes in the biomarkers would be observable throughout the lifespan of the organism. Although maximum lifespan would be a means of validating biomarkers of aging, it would not be a practical means for long-lived species such as humans because longitudinal studies would take far too much time. Ideally, biomarkers of aging should assay the biological process of ageing and not a predisposition to disease, should cause a minimal amount of trauma to assay in the organism, and should be reproducibly measurable during a short interval compared to the lifespan of the organism. Although graying of hair increases with age, hair graying cannot be called a biomarker of ageing. Similarly, skin wrinkles and other common changes seen with aging are not better indicators of future functionality than chronological age. Biogerontologists have continued efforts to find and validate biomarkers of aging, but success thus far has been limited. Levels of CD4 and CD8 memory T cells and naive T cells have been used to give good predictions of the expected lifespan of middle-aged mice. Advances in big data analysis allowed for the new types of 'aging clocks' to be developed. The epigenetic clock is a promising biomarker of aging and can accurately predict human chronological age. Basic blood biochemistry and cell counts can also be used to accurately predict the chronological age. Further studies of the hematological clock on the large datasets from South Korean, Canadian, and Eastern European populations demonstrated that biomarkers of aging may be population-specific and predictive of mortality.It is also possible to predict the human chronological age using the transcriptomic clock. The recent introduction of low-power and compact sensors, based on micro-electromechanical systems (MEMS) has led to a new breed of the wearable and affordable devices providing unparalleled opportunities for the collecting and cloud-storing personal digitized activity records. Consequently, modern deep machine learning techniques could be used to produce a proof-of-concept digital biomarker of age in the form of all-causes-mortality predictor from a sufficiently large collection of one week long human physical activity streams augmented by the rich clinical data (including the death register, as provided by, e.g., the NHANES study). A new epigenetic mark found in studies of aging cells is the loss of histones. Most of the evidence shows that loss of histones is linked to cell division. In aging and dividing yeast MNase-seq showed a loss of nucleosomes of ~50%. Proper histone dosage is important in yeast as shown from the extended lifespans seen in strains that are overexpressing histones. A consequence of histone loss in yeast is the amplification of transcription. In younger cells, genes that are most induced with age have specific chromatin structures, such as fuzzy nuclear positioning, lack of a nuclesome depleted region (NDR) at the promoter, weak chromatin phasing, a higher frequency of TATA elements, and higher occupancy of repressive chromatin factors. In older cells, however, the same genes nucleosome loss at the promoter is more prevalent which leads to higher transcription of these genes. This phenomenon is not only seen in yeast, but has also been seen in aging worms, during aging of human diploid primary fibroblasts, and in senescent human cells. In human primary fibroblasts, reduced synthesis of new histones was seen to be a consequence of shortened telomeres that activate the DNA damage response. Loss of core histones may be a general epigenetic mark of aging across many organisms. In addition to the core histones, H2A, H2B, H3, and H4, there are other versions of the histone proteins that can be significantly different in their sequence and are important for regulating chromatin dynamics. Histone H3.3 is a variant of histone H3 that is incorporated into the genome independent of replication. It is the major form of histone H3 seen in the chromatin of senescent human cells, and it appears that excess H3.3 can drive senescence. There are multiple variants of histone 2, the one most notably implicated in aging is macroH2A. The function of macroH2A has generally been assumed to be transcriptional silencing; most recently, it has been suggested that macroH2A is important in repressing transcription at Senescence-Associated Heterochromatin Foci (SAHF). Chromatin that contains macroH2A is impervious to ATP-dependent remodeling proteins and to the binding of transcription factors.

[ "Biomarker (medicine)", "Disease", "Genetics", "Gerontology", "Internal medicine" ]
Parent Topic
Child Topic
    No Parent Topic