language-icon Old Web
English
Sign In

Dicarboxylic acid

A dicarboxylic acid is an organic compound containing two carboxyl functional groups (−COOH). The general molecular formula for dicarboxylic acids can be written as HO2C−R−CO2H, where R can be aliphatic or aromatic. In general, dicarboxylic acids show similar chemical behavior and reactivity to monocarboxylic acids. Dicarboxylic acids are also used in the preparation of copolymers such as polyamides and polyesters. The most widely used dicarboxylic acid in the industry is adipic acid, which is a precursor used in the production of nylon. Other examples of dicarboxylic acids include aspartic acid and glutamic acid, two amino acids in the human body. The name can be abbreviated to diacid. A dicarboxylic acid is an organic compound containing two carboxyl functional groups (−COOH). The general molecular formula for dicarboxylic acids can be written as HO2C−R−CO2H, where R can be aliphatic or aromatic. In general, dicarboxylic acids show similar chemical behavior and reactivity to monocarboxylic acids. Dicarboxylic acids are also used in the preparation of copolymers such as polyamides and polyesters. The most widely used dicarboxylic acid in the industry is adipic acid, which is a precursor used in the production of nylon. Other examples of dicarboxylic acids include aspartic acid and glutamic acid, two amino acids in the human body. The name can be abbreviated to diacid. General formula HO2C(CH2)nCO2H. The PubChem links gives access to more information on the compounds, including other names, ids, toxicity and safety. Japan wax is a mixture containing triglycerides of C21, C22 and C23 dicarboxylic acids obtained from the sumac tree (Rhus sp.). A large survey of the dicarboxylic acids present in Mediterranean nuts revealed unusual components. A total of 26 minor acids (from 2 in pecan to 8% in peanut) were determined: 8 species derived from succinic acid, likely in relation with photosynthesis, and 18 species with a chain from 5 to 22 carbon atoms. Higher weight acids (>C20) are found in suberin present at vegetal surfaces (outer bark, root epidermis). C16 to C26 a, ω-dioic acids are considered as diagnostic for suberin. With C18:1 and C18:2, their content amount from 24 to 45% of whole suberin. They are present at low levels (< 5%) in plant cutin, except in Arabidopsis thaliana where their content can be higher than 50%. It was shown that hyperthermophilic microorganisms specifically contained a large variety of dicarboxylic acids.This is probably the most important difference between these microorganisms and other marine bacteria. Dioic fatty acids from C16 to C22 were found in an hyperthermophilic archaeon, Pyrococcus furiosus. Short and medium chain (up to 11 carbon atoms) dioic acids have been discovered in Cyanobacteria of the genus Aphanizomenon. Dicarboxylic acids may be produced by ω-oxidation of fatty acids during their catabolism. It was discovered that these compounds appeared in urine after administration of tricaprin and triundecylin. Although the significance of their biosynthesis remains poorly understood, it was demonstrated that ω-oxidation occurs in rat liver but at a low rate, needs oxygen, NADPH and cytochrome P450. It was later shown that this reaction is more important in starving or diabetic animals where 15% of palmitic acid is subjected to ω-oxidation and then tob-oxidation,this generates malonyl-coA which is further used in saturated fatty acid synthesis.The determination of the dicarboxylic acids generated by permanganate-periodate oxidation of monoenoic fatty acids was useful to study the position of the double bond in the carbon chain. Long-chain dicarboxylic acids containing vicinal dimethyl branching near the centre of the carbon chain have been discovered in the genus Butyrivibrio, bacteria which participate in the digestion of cellulose in the rumen. These fatty acids, named diabolic acids, have a chain length depending on the fatty acid used in the culture medium. The most abundant diabolic acid in Butyrivibrio had a 32-carbon chain length. Diabolic acids were also detected in the core lipids of the genus Thermotoga of the order Thermotogales, bacteria living in solfatara springs, deep-sea marine hydrothermal systems and high-temperature marine and continental oil fields. It was shown that about 10% of their lipid fraction were symmetrical C30 to C34 diabolic acids. The C30 (13,14-dimethyloctacosanedioic acid) and C32 (15,16-dimethyltriacontanedioic acid) diabolic acids have been described in Thermotoga maritima. Some parent C29 to C32 diacids but with methyl groups on the carbons C-13 and C-16 have been isolated and characterized from the lipids of thermophilic anaerobic eubacterium Themanaerobacter ethanolicus. The most abundant diacid was the C30 a,ω-13,16-dimethyloctacosanedioic acid. Biphytanic diacids are present in geological sediments and are considered as tracers of past anaerobic oxidation of methane. Several forms without or with one or two pentacyclic rings have been detected in Cenozoic seep limestones. These lipids may be unrecognized metabolites from Archaea.

[ "Biochemistry", "Organic chemistry", "Inorganic chemistry", "Polymer chemistry", "Suberic acid", "3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid", "Dodecanedioic acid", "Ferrocene dicarboxylic acid", "Hydroxydicarboxylic acid" ]
Parent Topic
Child Topic
    No Parent Topic