language-icon Old Web
English
Sign In

Polymyxin

Polymyxins are antibiotics. Polymyxins B and E (also known as colistin) are used in the treatment of Gram-negative bacterial infections. They work mostly by breaking up the bacterial cell membrane. They are part of a broader class of molecules called nonribosomal peptides. Polymyxins are antibiotics. Polymyxins B and E (also known as colistin) are used in the treatment of Gram-negative bacterial infections. They work mostly by breaking up the bacterial cell membrane. They are part of a broader class of molecules called nonribosomal peptides. They are produced in nature by Gram-positive bacteria such as Paenibacillus polymyxa. Polymyxin antibiotics are relatively neurotoxic and nephrotoxic, so are usually used only as a last resort if modern antibiotics are ineffective or are contraindicated. Typical uses are for infections caused by strains of multiple drug-resistant Pseudomonas aeruginosa or carbapenemase-producing Enterobacteriaceae. Polymyxins have less effect on Gram-positive organisms, and are sometimes combined with other agents (as with trimethoprim/polymyxin) to broaden the effective spectrum. Polymyxins B are not absorbed from the gastrointestinal tract, so they are only administered orally if the goal is to disinfect the GI tract. Another route of administration is chosen for systemic treatment, e.g., parenteral (often intravenously) or by inhalation. They are also used externally as a cream or drops to treat otitis externa (swimmers ear), and as a component of triple antibiotic ointment to treat and prevent skin infections. After binding to lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria, polymyxins disrupt both the outer and inner membranes. The hydrophobic tail is important in causing membrane damage, suggesting a detergent-like mode of action. Removal of the hydrophobic tail of polymyxin B yields polymyxin nonapeptide, which still binds to LPS, but no longer kills the bacterial cell. However, it still detectably increases the permeability of the bacterial cell wall to other antibiotics, indicating that it still causes some degree of membrane disorganization. Gram-negative bacteria can develop resistance to polymyxins through various modifications of the LPS structure that inhibit the binding of polymyxins to LPS. Antibiotic resistance to this drug has been increasing, especially in southern China. Recently the gene mcr-1, which confers the antibiotic resistance, has been isolated from bacterial plasmids in Enterobacteriaceae. Polymyxins are a group of cyclic non-ribosomal polypeptide (NRPs) which are biosynthesized by bacteria belonging to the genus Bacillus, more specifically the subgenus Paenibacillus. Polymyxins consist of 10 amino acid residues, six of which are L-α,γ-diaminobutyric acid (L-DAB). The DAB residues cause polymyxins to have multiple positively charged groups at physiological pH. Seven amino acid residues form the main cyclic component, while the other three extend from one of the cyclic residues as a linear chain terminating in either 6-methyloctanoic acid or 6-methylheptanoic acid at the N-terminus. During cyclization, residue 10 is bound to the bridging residue 4. The amino acid residues and DAB monomers are generally in the L (levo) configuration, however certain strains such as P. polymyxa PKB1 have been observed to incorporate DAB with the D (dextro) configuration at position 3 producing variations of polymyxin B.

[ "Antibiotics", "Bacteria", "Polimixina B", "Polymyxin E2", "Colistin B", "Polymyxin Antibiotic", "Aerosporin" ]
Parent Topic
Child Topic
    No Parent Topic