language-icon Old Web
English
Sign In

Cloud robotics

Cloud robotics is a field of robotics that attempts to invoke cloud technologies such as cloud computing, cloud storage, and other Internet technologies centred on the benefits of converged infrastructure and shared services for robotics. When connected to the cloud, robots can benefit from the powerful computation, storage, and communication resources of modern data center in the cloud, which can process and share information from various robots or agent (other machines, smart objects, humans, etc.). Humans can also delegate tasks to robots remotely through networks. Cloud computing technologies enable robot systems to be endowed with powerful capability whilst reducing costs through cloud technologies. Thus, it is possible to build lightweight, low cost, smarter robots have intelligent 'brain' in the cloud. The 'brain' consists of data center, knowledge base, task planners, deep learning, information processing, environment models, communication support, etc. ...the robot could then 'publish' its refined model to some website or universal repository of knowledge that all future robots could download and utilize. My vision is to have a 'robot knowledge database' that will over time improve the capabilities of all future robotic systems. It would serve as a warehouse of information and statistics about the physical world that robots can access and use to improve their reasoning about the consequences of possible actions and make better action plans in terms of accuracy, safety, and robustness. It could also serve as a kind of 'skill library'. For example, if I successfully programmed my butler robot how to cook a perfect omelette, I could 'upload' the software for omelette cooking to a server that all robots could then download whenever they were asked to cook an omelette. There could be a whole community of robot users uploading skill programs, much like the current 'shareware' and 'freeware' software models that are popular for PC users. Cloud robotics is a field of robotics that attempts to invoke cloud technologies such as cloud computing, cloud storage, and other Internet technologies centred on the benefits of converged infrastructure and shared services for robotics. When connected to the cloud, robots can benefit from the powerful computation, storage, and communication resources of modern data center in the cloud, which can process and share information from various robots or agent (other machines, smart objects, humans, etc.). Humans can also delegate tasks to robots remotely through networks. Cloud computing technologies enable robot systems to be endowed with powerful capability whilst reducing costs through cloud technologies. Thus, it is possible to build lightweight, low cost, smarter robots have intelligent 'brain' in the cloud. The 'brain' consists of data center, knowledge base, task planners, deep learning, information processing, environment models, communication support, etc. A cloud for robots potentially has at least six significant components: RoboEarth was funded by the European Union's Seventh Framework Programme for research, technological development projects, specifically to explore the field of cloud robotics. The goal of RoboEarth is to allow robotic systems to benefit from the experience of other robots, paving the way for rapid advances in machine cognition and behaviour, and ultimately, for more subtle and sophisticated human-machine interaction. RoboEarth offers a Cloud Robotics infrastructure. RoboEarth’s World-Wide-Web style database stores knowledge generated by humans – and robots – in a machine-readable format. Data stored in the RoboEarth knowledge base include software components, maps for navigation (e.g., object locations, world models), task knowledge (e.g., action recipes, manipulation strategies), and object recognition models (e.g., images, object models). The RoboEarth Cloud Engine includes support for mobile robots, autonomous vehicles, and drones, which require lots of computation for navigation. Rapyuta is an open source cloud robotics framework based on RoboEarth Engine developed by the robotics researcher at ETHZ. Within the framework, each robot connected to Rapyuta can have a secured computing environment (rectangular boxes) giving them the ability to move their heavy computation into the cloud. In addition, the computing environments are tightly interconnected with each other and have a high bandwidth connection to the RoboEarth knowledge repository. KnowRob is an extensional project of RoboEarth. It is a knowledge processing system that combines knowledge representation and reasoning methods with techniques for acquiring knowledge and for grounding the knowledge in a physical system and can serve as a common semantic framework for integrating information from different sources. RoboBrain is a large-scale computational system that learns from publicly available Internet resources, computer simulations, and real-life robot trials. It accumulates everything robotics into a comprehensive and interconnected knowledge base. Applications include prototyping for robotics research, household robots, and self-driving cars. The goal is as direct as the project's name—to create a centralised, always-online brain for robots to tap into. The project is dominated by Stanford University and Cornel University. And the project is supported by the National Science Foundation, the Office of Naval Research, the Army Research Office, Google, Microsoft, Qualcomm, the Alfred P. Sloan Foundation and the National Robotics Initiative, whose goal is to advance robotics to help make the United States more competitive in the world economy. MyRobots is a service for connecting robots and intelligent devices to the Internet. It can be regarded as a social network for robots and smart objects (i.e. Facebook for robots). With socialising, collaborating and sharing, robots can benefit from those interactions too by sharing their sensor information giving insight on their perspective of their current state. COALAS is funded by the INTERREG IVA France (Channel) – England European cross-border co-operation programme. The project aims to develop new technologies for handicapped people through social and technological innovation and through the users' social and psychological integrity. Objectives is to produce a cognitive ambient assistive living system with Healthcare cluster in cloud with domestic service robots like humanoid, intelligent wheelchair which connect with the cloud. ROS (Robot Operating System) provides an eco-system to support cloud robotics. ROS is a flexible and distributed framework for robot software development. It is a collection of tools, libraries, and conventions that aim to simplify the task of creating complex and robust robot behaviour across a wide variety of robotic platforms. A library for ROS that is a pure Java implementation, called rosjava, allows Android applications to be developed for robots. Since Android has a booming market and billion users, it would be significant in the field of Cloud Robotics.

[ "Robotics" ]
Parent Topic
Child Topic
    No Parent Topic