language-icon Old Web
English
Sign In

Degrees of freedom problem

The degrees of freedom problem or motor equivalence problem in motor control states that there are multiple ways for humans or animals to perform a movement in order to achieve the same goal. In other words, under normal circumstances, no simple one-to-one correspondence exists between a motor problem (or task) and a motor solution to the problem. The motor equivalence problem was first formulated by the Russian neurophysiologist Nikolai Bernstein: 'It is clear that the basic difficulties for co-ordination consist precisely in the extreme abundance of degrees of freedom, with which the centre is not at first in a position to deal.' The degrees of freedom problem or motor equivalence problem in motor control states that there are multiple ways for humans or animals to perform a movement in order to achieve the same goal. In other words, under normal circumstances, no simple one-to-one correspondence exists between a motor problem (or task) and a motor solution to the problem. The motor equivalence problem was first formulated by the Russian neurophysiologist Nikolai Bernstein: 'It is clear that the basic difficulties for co-ordination consist precisely in the extreme abundance of degrees of freedom, with which the centre is not at first in a position to deal.' Although the question of how the nervous system selects which particular degrees of freedom (DOFs) to use in a movement may be a problem to scientists, the abundance of DOFs is almost certainly an advantage to the mammalian and the invertebrate nervous systems. The human body has redundant anatomical DOFs (at muscles and joints), redundant kinematic DOFs (movements can have different trajectories, velocities, and accelerations and yet achieve the same goal), and redundant neurophysiological DOFs (multiple motoneurons synapsing on the same muscle, and vice versa). How the nervous system 'chooses' a subset of these near-infinite DOFs is an overarching difficulty in understanding motor control and motor learning. The study of motor control historically breaks down into two broad areas: 'Western' neurophysiological studies, and 'Bernsteinian' functional analysis of movement. The latter has become predominant in motor control, as Bernstein's theories have held up well and are considered founding principles of the field as it exists today. In the latter 19th and early 20th centuries, many scientists believed that all motor control came from the spinal cord, as experiments with stimulation in frogs displayed patterned movement ('motor primitives'), and spinalized cats were shown to be able to walk. This tradition was closely tied with the strict nervous system localizationism advocated during that period; since stimulation of the frog spinal cord in different places produced different movements, it was thought that all motor impulses were localized in the spinal cord. However, fixed structure and localizationism were slowly broken down as the central dogma of neuroscience. It is now known that the primary motor cortex and premotor cortex at the highest level are responsible for most voluntary movements. Animal models, though, remain relevant in motor control and spinal cord reflexes and central pattern generators are still a topic of study. Although Lashley (1933) first formulated the motor equivalence problem, it was Bernstein who articulated the DOF problem in its current form. In Bernstein's formulation, the problem results from infinite redundancy, yet flexibility between movements; thus, the nervous system apparently must choose a particular motor solution every time it acts. In Bernstein's formulation, a single muscle never acts in isolation. Rather, large numbers of 'nervous centres' cooperate in order to make a whole movement possible. Nervous impulses from different parts of the CNS may converge on the periphery in combination to produce a movement; however, there is great difficulty for scientists in understanding and coordinating the facts linking impulses to a movement. Bernstein's rational understanding of movement and prediction of motor learning via what we now call 'plasticity' was revolutionary for his time. In Bernstein's view, movements must always reflect what is contained in the 'central impulse', in one way or another. However, he recognized that effectors (feed-forward) were not the only important component to movement; feedback was also necessary. Thus, Bernstein was one of the first to understand movement as a closed circle of interaction between the nervous system and the sensory environment, rather than a simple arc toward a goal. He defined motor coordination as a means for overcoming indeterminacy due to redundant peripheral DOFs. With increasing DOFs, it is increasingly necessary for the nervous system to have a more complex, delicate organizational control. Because humans are adapted to survive, the 'most important' movements tend to be reflexes -- pain or defensive reflexes needed to be carried out in very short time scales in order for ancient humans to survive their harsh environment. Most of our movements, though, are voluntary; voluntary control had historically been under-emphasized or even disregarded altogether. Bernstein saw voluntary movements as structured around a 'motor problem' where the nervous system needed two factors to act: a full and complete perception of reality, as accomplished by multisensory integration, and objectivity of perception through constant and correct recognition of signals by the nervous system. Only with both may the nervous system choose an appropriate motor solution.

[ "Motor cortex" ]
Parent Topic
Child Topic
    No Parent Topic