language-icon Old Web
English
Sign In

Vigenère cipher

The Vigenère cipher (French pronunciation: ​) is a method of encrypting alphabetic text by using a series of interwoven Caesar ciphers, based on the letters of a keyword. It employs a form of polyalphabetic substitution. The Vigenère cipher (French pronunciation: ​) is a method of encrypting alphabetic text by using a series of interwoven Caesar ciphers, based on the letters of a keyword. It employs a form of polyalphabetic substitution. First described by Giovan Battista Bellaso in 1553, the cipher is easy to understand and implement, but it resisted all attempts to break it until 1863, three centuries later. This earned it the description le chiffre indéchiffrable (French for 'the indecipherable cipher'). Many people have tried to implement encryption schemes that are essentially Vigenère ciphers. In 1863, Friedrich Kasiski was the first to publish a general method of deciphering Vigenère ciphers. In the 19th century the scheme was misattributed to Blaise de Vigenère (1523–1596), and so acquired its present name. The first well-documented description of a polyalphabetic cipher was by Leon Battista Alberti around 1467 and used a metal cipher disk to switch between cipher alphabets. Alberti's system only switched alphabets after several words, and switches were indicated by writing the letter of the corresponding alphabet in the ciphertext. Later, Johannes Trithemius, in his work Polygraphiae (which was completed in manuscript form in 1508 but first published in 1518), invented the tabula recta, a critical component of the Vigenère cipher. The Trithemius cipher, however, provided a progressive, rather rigid and predictable system for switching between cipher alphabets. In 1586 Blaise de Vigenère published a type of polyalphabetic cipher called an autokey cipher – because its key is based on the original plaintext – before the court of Henry III of France.. The cipher now known as the Vigenère cipher, however, is that originally described by Giovan Battista Bellaso in his 1553 book La cifra del Sig. Giovan Battista Bellaso. He built upon the tabula recta of Trithemius but added a repeating 'countersign' (a key) to switch cipher alphabets every letter. Whereas Alberti and Trithemius used a fixed pattern of substitutions, Bellaso's scheme meant the pattern of substitutions could be easily changed, simply by selecting a new key. Keys were typically single words or short phrases, known to both parties in advance, or transmitted 'out of band' along with the message. Bellaso's method thus required strong security for only the key. As it is relatively easy to secure a short key phrase, such as by a previous private conversation, Bellaso's system was considerably more secure. In the 19th century, the invention of Bellaso's cipher was misattributed to Vigenère. David Kahn, in his book, The Codebreakers lamented this misattribution, saying that history had 'ignored this important contribution and instead named a regressive and elementary cipher for him though he had nothing to do with it'. The Vigenère cipher gained a reputation for being exceptionally strong. Noted author and mathematician Charles Lutwidge Dodgson (Lewis Carroll) called the Vigenère cipher unbreakable in his 1868 piece 'The Alphabet Cipher' in a children's magazine. In 1917, Scientific American described the Vigenère cipher as 'impossible of translation'. That reputation was not deserved. Charles Babbage is known to have broken a variant of the cipher as early as 1854 but did not publish his work. Kasiski entirely broke the cipher and published the technique in the 19th century, but even in the 16th century, some skilled cryptanalysts could occasionally break the cipher. The Vigenère cipher is simple enough to be a field cipher if it is used in conjunction with cipher disks. The Confederate States of America, for example, used a brass cipher disk to implement the Vigenère cipher during the American Civil War. The Confederacy's messages were far from secret, and the Union regularly cracked its messages. Throughout the war, the Confederate leadership primarily relied upon three key phrases: 'Manchester Bluff', 'Complete Victory' and, as the war came to a close, 'Come Retribution'. A Vernam cipher whose key is as long as the message becomes a one-time pad, a theoretically unbreakable cipher. Gilbert Vernam tried to repair the broken cipher (creating the Vernam–Vigenère cipher in 1918), but the technology he used was so cumbersome as to be impracticable.

[ "Cipher", "Ciphertext", "The Alphabet Cipher" ]
Parent Topic
Child Topic
    No Parent Topic