language-icon Old Web
English
Sign In

Atmospheric carbon cycle

The atmosphere is one of the Earth's major carbon reservoirs and an important component of the global carbon cycle, holding approximately 720 gigatons of carbon. Atmospheric carbon plays an important role in the greenhouse effect. The most important carbon compound in this respect is the gas carbon dioxide (CO2). Although it is a small percentage of the atmosphere (approximately 0.04% on a molar basis), it plays a vital role in retaining heat in the atmosphere and thus in the greenhouse effect. Other gases with effects on the climate containing carbon in the atmosphere are methane and chlorofluorocarbons (the latter is entirely anthropogenic). Emissions by humans in the past 200 years have almost doubled the amount carbon dioxide in the atmosphere. The atmosphere is one of the Earth's major carbon reservoirs and an important component of the global carbon cycle, holding approximately 720 gigatons of carbon. Atmospheric carbon plays an important role in the greenhouse effect. The most important carbon compound in this respect is the gas carbon dioxide (CO2). Although it is a small percentage of the atmosphere (approximately 0.04% on a molar basis), it plays a vital role in retaining heat in the atmosphere and thus in the greenhouse effect. Other gases with effects on the climate containing carbon in the atmosphere are methane and chlorofluorocarbons (the latter is entirely anthropogenic). Emissions by humans in the past 200 years have almost doubled the amount carbon dioxide in the atmosphere. The concentration of mostly carbon-based greenhouse gases has increased dramatically since the onset of the industrial era. This makes an understanding of the carbon component of the atmosphere highly important. The two main carbon greenhouse gases are methane and carbon dioxide. Methane (CH4) is one of the more potent greenhouse gases and is mainly produced by the digestion or decay of biological organisms. It is considered the second most important greenhouse gas, yet the methane cycle in the atmosphere is currently only poorly understood. The amount of methane produced and absorbed yearly varies widely. Large stores of methane can be found in the form of methane ice under permafrost and on continental shelves. Additional methane is produced by the anaerobic decay of organic material and is produced in organisms' digestive tracts, soil, etc. Natural methane production accounts 10-30% of global methane sources. Anthropogenic methane is produced in various ways, e.g. by raising cattle or through the decay of trash in landfills. It is also produced by several industrial sources, including the mining and distribution of fossil fuels. More than 70% of atmospheric methane comes from biogenic sources. Methane levels have risen gradually since the onset of the industrial era, from ~700 ppb in 1750 to ~1775 ppb in 2005. Methane can be removed from the atmosphere through a reaction of the photochemically produced hydroxyl free radical (OH). It can also leave the atmosphere by entering the stratosphere, where it is destroyed, or by being absorbed into soil sinks. Because methane reacts fairly quickly with other compounds, it does not stay in the atmosphere as long as many other greenhouse gases, e.g. carbon dioxide. It has an atmospheric lifetime of about eight years. This keeps the concentration of methane in the atmosphere relatively low and is the reason that it currently plays a secondary role in the greenhouse effect to carbon dioxide, despite the fact that it produces a much more powerful greenhouse effect per volume. Carbon dioxide (CO2) has a large warming effect on global temperatures through the greenhouse effect. Although individual CO2 molecules have a short residence time in the atmosphere, it takes an extremely long time for carbon dioxide levels to sink after sudden rises, due to e.g. volcanic eruptions or human activity and among the many long-lasting greenhouse gases, it is the most important because it makes up the largest fraction of the atmosphere.Since the industrial revolution, the CO2 concentration in the atmosphere has risen from about 280 ppm to almost 400 ppm. Although the amount of CO2 introduced makes up only a small portion of the global carbon cycle, carbon dioxide's long residence time makes these emissions relevant for the total carbon balance. The increased carbon dioxide concentration strengthens the greenhouse effect, causing changes to the global climate. Of the increased amounts of carbon dioxide that are introduced to the atmosphere each year, approximately 80% are from the combustion of fossil fuels and cement production. The other ~20% originate from land use change and deforestation. Because gaseous carbon dioxide does not react quickly with other chemicals, the main processes that change the carbon dioxide content of the atmosphere involve exchanges with the earth's other carbon reservoirs, as explained in the following sections. Atmospheric carbon is exchanged quickly between the oceans and the terrestrial biosphere. This means that at times the atmosphere acts as a sink, and at other times as a source of carbon. The following section introduces exchanges between the atmospheric and other components of the global carbon cycle. Carbon is exchanged with varying speed with the terrestrial biosphere. It is absorbed in the form of carbon dioxide by autotrophs and converted into organic compounds. Carbon is also released from the biosphere into the atmosphere in the course of biological processes. Aerobic respiration converts organic carbon into carbon dioxide and a particular type of anaerobic respiration converts it into methane. After respiration, both carbon dioxide and methane are typically emitted into the atmosphere. Organic carbon is also released into the atmosphere during burning.

[ "Carbon cycle", "Carbon sequestration", "Planktology", "Terrestrial biological carbon cycle" ]
Parent Topic
Child Topic
    No Parent Topic