Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes (including humans) comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control. Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all different types of RNA, RNA polymerase in eukaryotes (including humans) comes in three variations, each translating a different type of gene. A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control. Eukaryotic transcription proceeds in three sequential stages: initiation, elongation, and termination. The RNAs transcribed serve diverse functions. For example, structual components of the ribosome are transcribed by RNA polymerase I. Protein coding genes are transcribed by RNA polymerase II into messenger RNAs (mRNAs) that carry the information from DNA to the site of protein synthesis. More abundantly made are the so-called non-coding RNAs account for the large majority of the transcriptional output of a cell. These non-coding RNAs perform a variety of important cellular functions. Eukaryotes have three nuclear RNA polymerases, each with distinct roles and properties. RNA polymerase I (Pol I) catalyses the transcription of all rRNA genes except 5S. These rRNA genes are organised into a single transcriptional unit and are transcribed into a continuous transcript. This precursor is then processed into three rRNAs: 18S, 5.8S, and 28S. The transcription of rRNA genes takes place in a specialised structure of the nucleus called the nucleolus, where the transcribed rRNAs are combined with proteins to form ribosomes. RNA polymerase II (Pol II) is responsible for the transcription of all mRNAs, some snRNAs, siRNAs, and all miRNAs. Many Pol II transcripts exist transiently as single strand precursor RNAs (pre-RNAs) that are further processed to generate mature RNAs. For example, precursor mRNAs (pre-mRNAs) are extensively processed before exiting into the cytoplasm through the nuclear pore for protein translation. RNA polymerase III (Pol III) transcribes small non-coding RNAs, including tRNAs, 5S rRNA, U6 snRNA, SRP RNA, and other stable short RNAs such as ribonuclease P RNA. RNA Polymerases I, II, and III contain 14, 12, and 17 subunits, respectively. All three eukaryotic polymerases have five core subunits that exhibit homology with the β, β’, αI, αII, and ω subunits of E. coli RNA polymerase. An identical ω-like subunit (RBP6) is used by all three eukaryotic polymerases, while the same α-like subunits are used by Pol I and III. The three eukaryotic polymerases share four other common subunits among themselves. The remaining subunits are unique to each RNA polymerase. The additional subunits found in Pol I and Pol III relative to Pol II, are homologous to Pol II transcription factors. Crystal structures of RNA polymerases I and II provide an opportunity to understand the interactions among the subunits and the molecular mechanism of eukaryotic transcription in atomic detail.