In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer on the opposite side of it. An event horizon is most commonly associated with black holes, where gravitational forces are so strong that light cannot escape. In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer on the opposite side of it. An event horizon is most commonly associated with black holes, where gravitational forces are so strong that light cannot escape. Any object approaching the horizon from the observer's side appears to slow down and never quite pass through the horizon, with its image becoming more and more redshifted as time elapses. This means that the wavelength of the light emitted from the object is getting longer as the object moves away from the observer. The notion of an event horizon was originally restricted to black holes; light originating inside an event horizon could cross it temporarily but would return. Later a strict definition was introduced as a boundary beyond which events cannot affect any outside observer at all, encompassing other scenarios than black holes. This strict definition of EH has caused information and firewall paradoxes; therefore Stephen Hawking has supposed an apparent horizon to be used. The black hole event horizon is teleological in nature, meaning that we need to know the entire future space-time of the universe to determine the current location of the horizon, which is essentially impossible. Because of the purely theoretical nature of the event horizon boundary, the traveling object does not necessarily experience strange effects and does, in fact, pass through the calculatory boundary in a finite amount of proper time. More specific types of horizon include the related but distinct absolute and apparent horizons found around a black hole. Still other distinct notions include the Cauchy and Killing horizons; the photon spheres and ergospheres of the Kerr solution; particle and cosmological horizons relevant to cosmology; and isolated and dynamical horizons important in current black hole research. One of the best-known examples of an event horizon derives from general relativity's description of a black hole, a celestial object so massive that no nearby matter or radiation can escape its gravitational field. Often, this is described as the boundary within which the black hole's escape velocity is greater than the speed of light. However, a more accurate description is that within this horizon, all lightlike paths (paths that light could take) and hence all paths in the forward light cones of particles within the horizon, are warped so as to fall farther into the hole. Once a particle is inside the horizon, moving into the hole is as inevitable as moving forward in time, and can actually be thought of as equivalent to doing so, depending on the spacetime coordinate system used. The surface at the Schwarzschild radius acts as an event horizon in a non-rotating body that fits inside this radius (although a rotating black hole operates slightly differently). The Schwarzschild radius of an object is proportional to its mass. Theoretically, any amount of matter will become a black hole if compressed into a space that fits within its corresponding Schwarzschild radius. For the mass of the Sun this radius is approximately 3 kilometers and for the Earth it is about 9 millimeters. In practice, however, neither the Earth nor the Sun has the necessary mass and therefore the necessary gravitational force, to overcome electron and neutron degeneracy pressure. The minimal mass required for a star to be able to collapse beyond these pressures is the Tolman–Oppenheimer–Volkoff limit, which is approximately three solar masses. Black hole event horizons are widely misunderstood. Common, although erroneous, is the notion that black holes 'vacuum up' material in their neighborhood, where in fact they are no more capable of seeking out material to consume than any other gravitational attractor. As with any mass in the universe, matter must come within its gravitational scope for the possibility to exist of capture or consolidation with any other mass. Equally common is the idea that matter can be observed falling into a black hole. This is not possible. Astronomers can detect only accretion disks around black holes, where material moves with such speed that friction creates high-energy radiation which can be detected (similarly, some matter from these accretion disks is forced out along the axis of spin of the black hole, creating visible jets when these streams interact with matter such as interstellar gas or when they happen to be aimed directly at Earth). Furthermore, a distant observer will never actually see something reach the horizon. Instead, while approaching the hole, the object will seem to go ever more slowly, while any light it emits will be further and further redshifted. In cosmology, the event horizon of the observable universe is the largest comoving distance from which light emitted now can ever reach the observer in the future. This differs from the concept of particle horizon, which represents the largest comoving distance from which light emitted in the past could have reached the observer at a given time. For events beyond that distance, light has not had time to reach our location, even if it were emitted at the time the universe began. How the particle horizon changes with time depends on the nature of the expansion of the universe. If the expansion has certain characteristics, there are parts of the universe that will never be observable, no matter how long the observer waits for light from those regions to arrive. The boundary past which events cannot ever be observed is an event horizon, and it represents the maximum extent of the particle horizon. The criterion for determining whether a particle horizon for the universe exists is as follows. Define a comoving distance dp as