language-icon Old Web
English
Sign In

Fragment-based lead discovery

Fragment-based lead discovery (FBLD) also known as fragment-based drug discovery (FBDD) is a method used for finding lead compounds as part of the drug discovery process. Fragments are small organic molecules which are small in size and low in molecular weight. It is based on identifying small chemical fragments, which may bind only weakly to the biological target, and then growing them or combining them to produce a lead with a higher affinity. FBLD can be compared with high-throughput screening (HTS). In HTS, libraries with up to millions of compounds, with molecular weights of around 500 Da, are screened, and nanomolar binding affinities are sought. In contrast, in the early phase of FBLD, libraries with a few thousand compounds with molecular weights of around 200 Da may be screened, and millimolar affinities can be considered useful. FBLD is a technique being used in research for discovering novel potent inhibitors. Fragment-based lead discovery (FBLD) also known as fragment-based drug discovery (FBDD) is a method used for finding lead compounds as part of the drug discovery process. Fragments are small organic molecules which are small in size and low in molecular weight. It is based on identifying small chemical fragments, which may bind only weakly to the biological target, and then growing them or combining them to produce a lead with a higher affinity. FBLD can be compared with high-throughput screening (HTS). In HTS, libraries with up to millions of compounds, with molecular weights of around 500 Da, are screened, and nanomolar binding affinities are sought. In contrast, in the early phase of FBLD, libraries with a few thousand compounds with molecular weights of around 200 Da may be screened, and millimolar affinities can be considered useful. FBLD is a technique being used in research for discovering novel potent inhibitors. In analogy to the rule of five, it has been proposed that ideal fragments should follow the 'rule of three' (molecular weight < 300, ClogP < 3, the number of hydrogen bond donors and acceptors each should be < 3 and the number of rotatable bonds should be < 3). Since the fragments have relatively low affinity for their targets, they must have high water solubility so that they can be screened at higher concentrations. In fragment-based drug discovery, the low binding affinities of the fragments pose significant challenges for screening. Many biophysical techniques have been applied to address this issue. In particular, ligand-observe nuclear magnetic resonance (NMR) methods such as water-ligand observed via gradient spectroscopy (waterLOGSY), saturation transfer difference spectroscopy (STD-NMR), 19F NMR spectroscopy and inter-ligand Overhauser effect (ILOE) spectroscopy, protein-observe NMR methods such as 1H-15N heteronuclear single quantum coherence (HSQC) that utilises isotopically-labelled proteins, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and Microscale Thermophoresis (MST) are routinely-used for ligand screening and for the quantification of fragment binding affinity to the target protein. Once a fragment (or a combination of fragments) have been identified, protein X-ray crystallography is used to obtain structural models of the protein-fragment(s) complexes. Such information can then be used to guide organic synthesis for high-affinity protein ligands and enzyme inhibitors. Advantages of screening low molecular weight fragment based libraries over traditional higher molecular weight chemical libraries are several. These include:

[ "Drug discovery", "fragment" ]
Parent Topic
Child Topic
    No Parent Topic