Humoral immunity or humoural immunity is the aspect of immunity that is mediated by macromolecules found in extracellular fluids such as secreted antibodies, complement proteins, and certain antimicrobial peptides. Humoral immunity is so named because it involves substances found in the humors, or body fluids. It contrasts with cell-mediated immunity. Its aspects involving antibodies are often called antibody-mediated immunity. Humoral immunity or humoural immunity is the aspect of immunity that is mediated by macromolecules found in extracellular fluids such as secreted antibodies, complement proteins, and certain antimicrobial peptides. Humoral immunity is so named because it involves substances found in the humors, or body fluids. It contrasts with cell-mediated immunity. Its aspects involving antibodies are often called antibody-mediated immunity. The study of the molecular and cellular components that form the immune system, including their function and interaction, is the central science of immunology. The immune system is divided into a more primitive innate immune system, and acquired or adaptive immune system of vertebrates, each of which contains humoral and cellular components. Humoral immunity refers to antibody production and the accessory processes that accompany it, including: Th2 activation and cytokine production, germinal center formation and isotype switching, affinity maturation and memory cell generation. It also refers to the effector functions of antibodies, which include pathogen and toxin neutralization, classical complement activation, and opsonin promotion of phagocytosis and pathogen elimination. The concept of humoral immunity developed based on analysis of antibacterial activity of the serum components. Hans Buchner is credited with the development of the humoral theory. In 1890 he described alexins, or 'protective substances', which exist in the blood serum and other bodily fluid and are capable of killing microorganisms. Alexins, later redefined 'complement' by Paul Ehrlich, were shown to be the soluble components of the innate response that lead to a combination of cellular and humoral immunity, and bridged the features of innate and acquired immunity. Following the 1888 discovery of the bacteria that cause diphtheria and tetanus, Emil von Behring and Kitasato Shibasaburō showed that disease need not be caused by microorganisms themselves. They discovered that cell-free filtrates were sufficient to cause disease. In 1890, filtrates of diphtheria, later named diphtheria toxins, were used to vaccinate animals in an attempt to demonstrate that immunized serum contained an antitoxin that could neutralize the activity of the toxin and could transfer immunity to non-immune animals. In 1897, Paul Ehrlich showed that antibodies form against the plant toxins ricin and abrin, and proposed that these antibodies are responsible for immunity. Ehrlich, with his friend Emil von Behring, went on to develop the diphtheria antitoxin, which became the first major success of modern immunotherapy. The presence and specificity of compatibility antibodies became the major tool for standardizing the state of immunity and identifying the presence of previous infections. In humoral immune response, first the B cells mature in the bone marrow and gain B-cell receptors (BCR's) which are displayed in large number on the cell surface. These membrane-bound protein complexes have antibodies which are specific for antigen detection. Each B cell has a unique antibody that binds with an antigen. The mature B cells migrate from the bone marrow to the lymph nodes or other lymphatic organs, where they begin to encounter pathogens. When a B cell encounters an antigen, it is bound to the receptor and taken inside by endocytosis. The antigen is processed and presented on the B cell's surface again by MHC-II proteins. The B cell waits for a helper T cell (TH) to bind to the complex. This binding will activate the TH cell, which then releases cytokines that induce B cells to divide rapidly, making thousands of identical clones of the B cell. These daughter cells either become plasma cells or memory cells. The memory B cells remain inactive here; later when these memory B cells encounter the same antigen due to reinfection, they divide and form plasma cells. On the other hand, the plasma cells produce a large number of antibodies which are released free into the circulatory system.