language-icon Old Web
English
Sign In

Endomembrane system

The endomembrane system is composed of the different membranes that are suspended in the cytoplasm within a eukaryotic cell. These membranes divide the cell into functional and structural compartments, or organelles. In eukaryotes the organelles of the endomembrane system include: the nuclear membrane, the endoplasmic reticulum, the Golgi apparatus, lysosomes, vesicles, endosomes, and plasma (cell) membrane among others. The system is defined more accurately as the set of membranes that form a single functional and developmental unit, either being connected directly, or exchanging material through vesicle transport. Importantly, the endomembrane system does not include the membranes of chloroplasts or mitochondria, but might have evolved from the latter (see below: Evolution). The endomembrane system is composed of the different membranes that are suspended in the cytoplasm within a eukaryotic cell. These membranes divide the cell into functional and structural compartments, or organelles. In eukaryotes the organelles of the endomembrane system include: the nuclear membrane, the endoplasmic reticulum, the Golgi apparatus, lysosomes, vesicles, endosomes, and plasma (cell) membrane among others. The system is defined more accurately as the set of membranes that form a single functional and developmental unit, either being connected directly, or exchanging material through vesicle transport. Importantly, the endomembrane system does not include the membranes of chloroplasts or mitochondria, but might have evolved from the latter (see below: Evolution). The nuclear membrane contains a lipid bilayer that encompass the contents of the nucleus. The endoplasmic reticulum (ER) is a synthesis and transport organelle that branches into the cytoplasm in plant and animal cells. The Golgi apparatus is a series of multiple compartments where molecules are packaged for delivery to other cell components or for secretion from the cell. Vacuoles, which are found in both plant and animal cells (though much bigger in plant cells), are responsible for maintaining the shape and structure of the cell as well as storing waste products. A vesicle is a relatively small, membrane-enclosed sac that stores or transports substances. The cell membrane is a protective barrier that regulates what enters and leaves the cell. There is also an organelle known as the Spitzenkörper that is only found in fungi, and is connected with hyphal tip growth. In prokaryotes endomembranes are rare, although in many photosynthetic bacteria the plasma membrane is highly folded and most of the cell cytoplasm is filled with layers of light-gathering membrane. These light-gathering membranes may even form enclosed structures called chlorosomes in green sulfur bacteria. The organelles of the endomembrane system are related through direct contact or by the transfer of membrane segments as vesicles. Despite these relationships, the various membranes are not identical in structure and function. The thickness, molecular composition, and metabolic behavior of a membrane are not fixed, they may be modified several times during the membrane's life. One unifying characteristic the membranes share is a lipid bilayer, with proteins attached to either side or traversing them. Most lipids are synthesized in yeast either in the endoplasmic reticulum, lipid particles, or the mitochondrion, with little or no lipid synthesis occurring in the plasma membrane or nuclear membrane. Sphingolipid biosynthesis begins in the endoplasmic reticulum, but is completed in the Golgi apparatus. The situation is similar in mammals, with the exception of the first few steps in ether lipid biosynthesis, which occur in peroxisomes. The various membranes that enclose the other subcellular organelles must therefore be constructed by transfer of lipids from these sites of synthesis. However, although it is clear that lipid transport is a central process in organelle biogenesis, the mechanisms by which lipids are transported through cells remain poorly understood. The first proposal that the membranes within cells form a single system that exchanges material between its components was by Morré and Mollenhauer in 1974. This proposal was made as a way of explaining how the various lipid membranes are assembled in the cell, with these membranes being assembled through lipid flow from the sites of lipid synthesis. The idea of lipid flow through a continuous system of membranes and vesicles was an alternative to the various membranes being independent entities that are formed from transport of free lipid components, such as fatty acids and sterols, through the cytosol. Importantly, the transport of lipids through the cytosol and lipid flow through a continuous endomembrane system are not mutually exclusive processes and both may occur in cells. The nuclear envelope surrounds the nucleus, separating its contents from the cytoplasm. It has two membranes, each a lipid bilayer with associated proteins. The outer nuclear membrane is continuous with the rough endoplasmic reticulum membrane, and like that structure, features ribosomes attached to the surface. The outer membrane is also continuous with the inner nuclear membrane since the two layers are fused together at numerous tiny holes called nuclear pores that perforate the nuclear envelope. These pores are about 120 nm in diameter and regulate the passage of molecules between the nucleus and cytoplasm, permitting some to pass through the membrane, but not others. Since the nuclear pores are located in an area of high traffic, they play an important role in the physiology of cells. The space between the outer and inner membranes is called the perinuclear space and is joined with the lumen of the rough ER. The nuclear envelope's structure is determined by a network of intermediate filaments (protein filaments). This network is organized into lining similar to mesh called the nuclear lamina, which binds to chromatin, integral membrane proteins, and other nuclear components along the inner surface of the nucleus. The nuclear lamina is thought to help materials inside the nucleus reach the nuclear pores and in the disintegration of the nuclear envelope during mitosis and its reassembly at the end of the process. The nuclear pores are highly efficient at selectively allowing the passage of materials to and from the nucleus, because the nuclear envelope has a considerable amount of traffic. RNA and ribosomal subunits must be continually transferred from the nucleus to the cytoplasm. Histones, gene regulatory proteins, DNA and RNA polymerases, and other substances essential for nuclear activities must be imported from the cytoplasm. The nuclear envelope of a typical mammalian cell contains 3000–4000 pore complexes. If the cell is synthesizing DNA each pore complex needs to transport about 100 histone molecules per minute. If the cell is growing rapidly, each complex also needs to transport about 6 newly assembled large and small ribosomal subunits per minute from the nucleus to the cytosol, where they are used to synthesize proteins.

[ "Golgi apparatus", "Vesicle", "Organelle", "Gloeomonas kupfferi", "Endomembrane organization", "Gloeomonas" ]
Parent Topic
Child Topic
    No Parent Topic