language-icon Old Web
English
Sign In

Quantum image processing

Quantum image processing (QIP) is primarily devoted to using quantum computing and quantum information processing to create and work with quantum images. Due to some of the astounding properties inherent to quantum computation, notably entanglement and parallelism, it is anticipated that QIP technologies will offer capabilities and performances that are, as yet, unrivaled by their traditional equivalents. These improvements could be in terms of computing speed, guaranteed security, and minimal storage requirements, etc. Quantum image processing (QIP) is primarily devoted to using quantum computing and quantum information processing to create and work with quantum images. Due to some of the astounding properties inherent to quantum computation, notably entanglement and parallelism, it is anticipated that QIP technologies will offer capabilities and performances that are, as yet, unrivaled by their traditional equivalents. These improvements could be in terms of computing speed, guaranteed security, and minimal storage requirements, etc. Vlasov's work in 1997 focused on the use of a quantum system to recognize orthogonal images. This was followed by efforts using quantum algorithms to search specific patterns in binary images and detect the posture of certain targets. Notably, more optics-based interpretation for quantum imaging were initially experimentally demonstrated in and formalized in after seven years. Venegas-Andraca and Bose's Qubit Lattice describes quantum images in 2003. Simultaneously, Lattorre proposed another kind of representation, called the Real Ket, whose purpose was to encode quantum images as a basis for further applications in QIMP. Technically, these pioneering efforts with the subsequent studies related to them can be classified into three main groups: A lot of the effort in QIP has been focused on designing algorithms to manipulate the position and color information encoded using the FRQI and its many variants. For instance, FRQI-based fast geometric transformations including (two-point) swapping, flip, (orthogonal) rotations and restricted geometric transformations to constrain these operations to a specified area of an image were initially proposed. Recently, NEQR-based quantum image translation to map the position of each picture element in an input image into a new position in an output image and quantum image scaling to resize a quantum image were discussed. While FRQI-based general form of color transformations were first proposed by means of the single qubit gates such as X, Z, and H gates. Later, MCQI-based channel of interest (CoI) operator to entail shifting the grayscale value of the preselected color channel and the channel swapping (CS) operator to swap the grayscale values between two channels were fully discussed in. To illustrate the feasibility and capability of QIP algorithms and application, researchers always prefer to simulate the digital image processing tasks on the basis of the QIRs that we already have. By using the basic quantum gates and the aforementioned operations, so far, researchers have contributed to quantum image feature extraction, quantum image segmentation, quantum image morphology, quantum image comparison, quantum image filtering, quantum image classification, quantum image stabilization, among others. In particular, QIMP-based security technologies have attracted extensive interest of researchers as presented in the ensuing discussions. Similarly, these advancements have led to many applications in the areas of watermarking, encryption, and steganography etc., which form the core security technologies highlighted in this area.

[ "Quantum operation", "quantum image" ]
Parent Topic
Child Topic
    No Parent Topic