language-icon Old Web
English
Sign In

Electron beam-induced current

Electron-beam-induced current (EBIC) is a semiconductor analysis technique performed in a scanning electron microscope (SEM) or scanning transmission electron microscope (STEM). It is used to identify buried junctions or defects in semiconductors, or to examine minority carrier properties. EBIC is similar to cathodoluminescence in that it depends on the creation of electron–hole pairs in the semiconductor sample by the microscope's electron beam. This technique is used in semiconductor failure analysis and solid-state physics. Electron-beam-induced current (EBIC) is a semiconductor analysis technique performed in a scanning electron microscope (SEM) or scanning transmission electron microscope (STEM). It is used to identify buried junctions or defects in semiconductors, or to examine minority carrier properties. EBIC is similar to cathodoluminescence in that it depends on the creation of electron–hole pairs in the semiconductor sample by the microscope's electron beam. This technique is used in semiconductor failure analysis and solid-state physics. If the semiconductor sample contains an internal electric field, as will be present in the depletion region at a p-n junction or Schottky junction, the electron–hole pairs will be separated by drift due to the electric field. If the p- and n-sides (or semiconductor and Schottky contact, in the case of a Schottky device) are connected through a picoammeter, a current will flow. EBIC is best understood by analogy: in a solar cell, photons of light fall on the entire cell, thus delivering energy and creating electron hole pairs, and cause a current to flow. In EBIC, energetic electrons take the role of the photons, causing the EBIC current to flow. However, because the electron beam of an SEM or STEM is very small, it is scanned across the sample and variations in the induced EBIC are used to map the electronic activity of the sample.

[ "Scanning electron microscope", "Recombination", "Dislocation", "Silicon" ]
Parent Topic
Child Topic
    No Parent Topic