On-Line Encyclopedia of Integer Sequences

The On-Line Encyclopedia of Integer Sequences (OEIS), also cited simply as Sloane's, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs. Foreseeing his retirement from AT&T Labs in 2012 and the need for an independent foundation, Sloane agreed to transfer the intellectual property and hosting of the OEIS to the OEIS Foundation in October 2009. Sloane is president of the OEIS Foundation. The On-Line Encyclopedia of Integer Sequences (OEIS), also cited simply as Sloane's, is an online database of integer sequences. It was created and maintained by Neil Sloane while a researcher at AT&T Labs. Foreseeing his retirement from AT&T Labs in 2012 and the need for an independent foundation, Sloane agreed to transfer the intellectual property and hosting of the OEIS to the OEIS Foundation in October 2009. Sloane is president of the OEIS Foundation. OEIS records information on integer sequences of interest to both professional mathematicians and amateurs, and is widely cited. As of June 2019 it contains over 320,000 sequences, making it the largest database of its kind. Each entry contains the leading terms of the sequence, keywords, mathematical motivations, literature links, and more, including the option to generate a graph or play a musical representation of the sequence. The database is searchable by keyword and by subsequence. Neil Sloane started collecting integer sequences as a graduate student in 1965 to support his work in combinatorics. The database was at first stored on punched cards. He published selections from the database in book form twice: These books were well received and, especially after the second publication, mathematicians supplied Sloane with a steady flow of new sequences. The collection became unmanageable in book form, and when the database had reached 16,000 entries Sloane decided to go online—first as an e-mail service (August 1994), and soon after as a web site (1996). As a spin-off from the database work, Sloane founded the Journal of Integer Sequences in 1998.The database continues to grow at a rate of some 10,000 entries a year.Sloane has personally managed 'his' sequences for almost 40 years, but starting in 2002, a board of associate editors and volunteers has helped maintain the database.In 2004, Sloane celebrated the addition of the 100,000th sequence to the database, A100000, which counts the marks on the Ishango bone. In 2006, the user interface was overhauled and more advanced search capabilities were added. In 2010 an OEIS wiki at OEIS.org was created to simplify the collaboration of the OEIS editors and contributors. The 200,000th sequence, A200000, was added to the database in November 2011; it was initially entered as A200715, and moved to A200000 after a week of discussion on the SeqFan mailing list, following a proposal by OEIS Editor-in-Chief Charles Greathouse to choose a special sequence for A200000. Besides integer sequences, the OEIS also catalogs sequences of fractions, the digits of transcendental numbers, complex numbers and so on by transforming them into integer sequences.Sequences of rationals are represented by two sequences (named with the keyword 'frac'): the sequence of numerators and the sequence of denominators. For example, the fifth-order Farey sequence, 1 5 , 1 4 , 1 3 , 2 5 , 1 2 , 3 5 , 2 3 , 3 4 , 4 5 {displaystyle extstyle {1 over 5},{1 over 4},{1 over 3},{2 over 5},{1 over 2},{3 over 5},{2 over 3},{3 over 4},{4 over 5}} , is catalogued as the numerator sequence 1, 1, 1, 2, 1, 3, 2, 3, 4 (A006842) and the denominator sequence 5, 4, 3, 5, 2, 5, 3, 4, 5 (A006843).Important irrational numbers such as π = 3.1415926535897... are catalogued under representative integer sequences such as decimal expansions (here 3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 7, 9, 5, 0, 2, 8, 8, ... (A000796)), binary expansions (here 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, ... (A004601)), or continued fraction expansions (here 3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2, 1, 1, ... (A001203)). The OEIS was limited to plain ASCII text until 2011, and it still uses a linear form of conventional mathematical notation (such as f(n) for functions, n for running variables, etc.). Greek letters are usually represented by their full names, e.g., mu for μ, phi for φ.Every sequence is identified by the letter A followed by six digits, almost always referred to with leading zeros, e.g., A000315 rather than A315.Individual terms of sequences are separated by commas. Digit groups are not separated by commas, periods, or spaces.In comments, formulas, etc., a(n) represents the nth term of the sequence. Zero is often used to represent non-existent sequence elements. For example, A104157 enumerates the 'smallest prime of n² consecutive primes to form an n×n magic square of least magic constant, or 0 if no such magic square exists.' The value of a(1) (a 1×1 magic square) is 2; a(3) is 1480028129. But there is no such 2×2 magic square, so a(2) is 0.This special usage has a solid mathematical basis in certain counting functions. For example, the totient valence function Nφ(m) (A014197) counts the solutions of φ(x) = m. There are 4 solutions for 4, but no solutions for 14, hence a(14) of A014197 is 0—there are no solutions.Occasionally −1 is used for this purpose instead, as in A094076. The OEIS maintains the lexicographical order of the sequences, so each sequence has a predecessor and a successor (its 'context'). OEIS normalizes the sequences for lexicographical ordering, (usually) ignoring all initial zeros and ones, and also the sign of each element. Sequences of weight distribution codes often omit periodically recurring zeros.

[ "Integer sequence" ]
Parent Topic
Child Topic
    No Parent Topic