language-icon Old Web
English
Sign In

Haber process

The Haber process, also called the Haber–Bosch process, is an artificial nitrogen fixation process and is the main industrial procedure for the production of ammonia today. It is named after its inventors, the German chemists Fritz Haber and Carl Bosch, who developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using a metal catalyst under high temperatures and pressures: Before the development of the Haber process, ammonia had been difficult to produce on an industrial scale, with early methods such as the Birkeland–Eyde process and Frank–Caro process all being highly inefficient. Although the Haber process is mainly used to produce fertilizer today, during World War I it provided Germany with a source of ammonia for the production of explosives, compensating for the Allied Powers' trade blockade on Chilean saltpeter. Throughout the 19th century the demand for nitrates and ammonia for use as fertilizers and industrial feedstocks had been steadily increasing. The main source was mining niter deposits. At the beginning of the 20th century it was being predicted that these reserves could not satisfy future demands and research into new potential sources of ammonia became more important. Although atmospheric nitrogen (N2) is abundant, comprising nearly 80% of the air, N2 is exceptionally stable and will not readily react with other chemicals. Converting N2 into ammonia posed a challenge for chemists globally. Haber, with his assistant Robert Le Rossignol, developed the high-pressure devices and catalysts needed to demonstrate the Haber process at laboratory scale. They demonstrated their process in the summer of 1909 by producing ammonia from air, drop by drop, at the rate of about 125 ml (4 US fl oz) per hour. The process was purchased by the German chemical company BASF, which assigned Carl Bosch the task of scaling up Haber's tabletop machine to industrial-level production. He succeeded in 1910. Haber and Bosch were later awarded Nobel prizes, in 1918 and 1931 respectively, for their work in overcoming the chemical and engineering problems of large-scale, continuous-flow, high-pressure technology. Ammonia was first manufactured using the Haber process on an industrial scale in 1913 in BASF's Oppau plant in Germany, reaching 20 tonnes per day the following year. During World War I, the production of munitions required large amounts of nitrate. The Allies had access to large sodium nitrate deposits in Chile (Chile saltpetre) controlled by British companies. Germany had no such resources, so the Haber process proved essential to the German war effort. Synthetic ammonia from the Haber process was used for the production of nitric acid, a precursor to the nitrates used in explosives. During the interbellum years, alternative processes were developed, the most notably different being the Casale process and Claude process. Luigi Casale and Georges Claude proposed to increase the pressure of the synthesis loop to 80–100 MPa (800–1,000 bar; 12,000–15,000 psi), thereby increasing the single pass ammonia conversion and making near-complete liquefaction at ambient temperature feasible. Georges Claude even proposed to have three or four converters with liquefaction steps in series, thereby omitting the need for a recycle. Nowadays, most plants resemble the original Haber process (20 MPa (200 bar; 2,900 psi) and 500 °C (932 °F)), albeit with improved single pass conversion and lower energy consumption due to process and catalyst optimization.

[ "Ammonia production" ]
Parent Topic
Child Topic
    No Parent Topic