language-icon Old Web
English
Sign In

Strongylocentrotus droebachiensis

Strongylocentrotus droebachiensis is commonly known as the green sea urchin because of its characteristic green color. It is commonly found in northern waters all around the world including both the Pacific and Atlantic Oceans to a northerly latitude of 81 degrees and as far south as the Puget Sound (Washington State) and England. The average adult size is around 50 mm (2 in), but it has been recorded at a diameter of 87 mm (3.4 in). The green sea urchin prefers to eat seaweeds but will eat other organisms. They are eaten by a variety of predators, including sea stars, crabs, large fish, mammals, birds, and humans. Strongylocentrotus droebachiensis is found on rocky substratum in the intertidal and up to depths of 1,150 meters (3,770 ft). It uses its strong Aristotle's lantern to burrow into rock, and then can widen its home with the spines. Usually, this sea urchin can leave its hole to find food and then return, but sometimes it creates a hole that gets bigger as it gets deeper, so that the opening is too small for S. droebachiensis to get out. S. droebachiensis is a euryhaline species, and can survive in waters of low salinity. This allows it to flourish in the south Puget Sound. Acclimation and size are important factors as larger individuals have a lower surface area to volume ratio and can handle the increased osmotic tension. Strongylocentrotus droebachiensis is in the shape of a slightly flattened globe (dorsoventrally). The oral side rests against the substratum and the aboral side (the side with the anus) is in the opposite direction. It has pentameric symmetry, which is visible in the five paired rows of podia (tube feet) that run from the anus to the mouth. The size is calculated as the diameter of the test (the body not including the spines). This is a relatively fast growing sea urchin, and its age is generally calculable based on its size: one year for every 10 mm. The spines of Strongylocentrotus droebachiensis are used for defense and locomotion and are not considered poisonous. The spines attach to small tubercles on the test where they are held in place by muscles creating a ball and socket joint. They are round, tapering to a point, with ridges around the outside in a fan-like design made of calcium carbonate. Usually, the longest spines are around the peripheral edge of the animal. If broken, the spines will regenerate, and if completely torn off, the tubercle will be reabsorbed to fit the slowly growing spine. Tube feet are a structure that help Strongylocentrotus droebachiensis attach to the substratum for stabilization or locomotion, or to move loose food particles to the mouth. The tube feet are quite flexible and can extend beyond the length of the spikes to reach the substratum or attach onto particles floating in the water. They come out of five pairs of rows through the test structure. The tube feet of S. droebachiensis are actually composed of two parts: the ampulla and the podium. The ampulla is a hollow bulbous structure that raises the tube foot above the skeletal plates that surround the lateral canal. The podia extend off the ampulla and contain the muscular suckered structure used for attachment. The movement of the tube foot depends on the hydraulic pressure of the water vascular system, and individual muscle action. When the ampulla contracts, it forces the liquid into the podia which elongates. Once the podia has attached itself to the substrate, the longitudinal muscles of the podia constrict forcing that liquid back into the ampulla causing the podia to shrink and pulling the body in that direction, or food closer to the mouth. Tube feet that have been pulled off as the sea urchin is thrown around by the sea will quickly regenerate. Echinoderms of the classes Asteroidea (sea stars) and Echinoidea (sea urchins/sand dollars) have three small pincher-like jaws held up by a calcareous stalk, called pedicellariae, at the base of the spines on the body. These have the ability to respond to outside stimuli separately from the main nervous system. Historically thought of as parasites or larvae of the sea urchin, it is now commonly believed that the pedicellariae are actually part of the living creature. The muscles that control them are outside of the test, and therefore must get nutrients from a different source: they have possibly developed the ability to absorb nutrients directly from the surrounding water. Pedicellariae are used by the sea urchin by keeping detritus from collecting on the body, or collecting kelp to use as a defense from the drying abilities of the sunlight. Their pinching jaws can even be used to defend against possible predators, and some are even poisonous on S. droebachiensis. If the spikes are lightly touched, they converge toward the pressure, but if they are strongly pushed, then they spread apart so that the pedicellariae can pinch the intruder. One of the four main types of pedicellariae on S. droebachiensis is actually poisonous and can be used for defense, or to paralyze small fish (although this species prefers algae, it will catch and eat fish for supplemental food).

[ "Sea urchin", "Ophiopholis aculeata", "Paramoeba invadens", "Strongylocentrotus pallidus", "Echinomermella matsi" ]
Parent Topic
Child Topic
    No Parent Topic