The earliest reliably documented mention of the spherical Earth concept dates from around the 6th century BC when it appeared in ancient Greek philosophy, but remained a matter of speculation until the 3rd century BC, when Hellenistic astronomy established the spherical shape of the Earth as a physical given and calculated Earth's circumference. The paradigm was gradually adopted throughout the Old World during Late Antiquity and the Middle Ages. A practical demonstration of Earth's sphericity was achieved by Ferdinand Magellan and Juan Sebastián Elcano's expedition's circumnavigation (1519–1522).Ampelius, Chalcidius, Macrobius, Martianus Capella,Basil of Caesarea, Ambrose of Milan, Aurelius Augustinus, Paulus Orosius, Jordanes, Cassiodorus, Boethius, Visigoth king Sisebut.Important contributions to geodesy and geography were also made by Biruni. He introduced techniques to measure the earth and distances on it using triangulation. He found the radius of the earth to be 6339.6 km, a value not obtained in the West until the 16th century. His Masudic canon contains a table giving the coordinates of six hundred places, almost all of which he had direct knowledge.European astronomy was so much judged worth consideration that numerous Chinese authors developed the idea that the Chinese of antiquity had anticipated most of the novelties presented by the missionaries as European discoveries, for example, the rotundity of the Earth and the 'heavenly spherical star carrier model.' Making skillful use of philology, these authors cleverly reinterpreted the greatest technical and literary works of Chinese antiquity. From this sprang a new science wholly dedicated to the demonstration of the Chinese origin of astronomy and more generally of all European science and technology. The earliest reliably documented mention of the spherical Earth concept dates from around the 6th century BC when it appeared in ancient Greek philosophy, but remained a matter of speculation until the 3rd century BC, when Hellenistic astronomy established the spherical shape of the Earth as a physical given and calculated Earth's circumference. The paradigm was gradually adopted throughout the Old World during Late Antiquity and the Middle Ages. A practical demonstration of Earth's sphericity was achieved by Ferdinand Magellan and Juan Sebastián Elcano's expedition's circumnavigation (1519–1522). The concept of a spherical Earth displaced earlier beliefs in a flat Earth: In early Mesopotamian mythology, the world was portrayed as a flat disk floating in the ocean with a hemispherical sky-dome above, and this forms the premise for early world maps like those of Anaximander and Hecataeus of Miletus. Other speculations on the shape of Earth include a seven-layered ziggurat or cosmic mountain, alluded to in the Avesta and ancient Persian writings (see seven climes). The realization that the figure of the Earth is more accurately described as an ellipsoid dates to the 17th century, as described by Isaac Newton in Principia. In the early 19th century, the flattening of the earth ellipsoid was determined to be of the order of 1/300 (Delambre, Everest). The modern value as determined by the US DoD World Geodetic System since the 1960s is close to 1/298.25. The Earth is massive enough that the pull of gravity created and maintains its roughly spherical shape. Most of its deviation from spherical stems from the centrifugal force caused by rotation around its north-south axis. This force deforms the sphere into an oblate ellipsoid. The Solar System formed from a dust cloud that was at least partially the remnant of one or more supernovas that created heavy elements by nucleosynthesis. Grains of matter accreted through electrostatic interaction. As they grew in mass, gravity took over in gathering yet more mass, releasing the potential energy of their collisions and in-falling as heat. The protoplanetary disk also had a greater proportion of radioactive elements than the Earth today because, over time, those elements decayed. Their decay heated the early Earth even further, and continue to contribute to Earth's internal heat budget. The early Earth was thus mostly liquid. A sphere is the only stable shape for a non-rotating, gravitationally self-attracting liquid. The outward acceleration caused by the Earth's rotation is greater at the equator than at the poles (where is it zero), so the sphere gets deformed into an ellipsoid, which represents the shape having the lowest potential energy for a rotating, fluid body. This ellipsoid is slightly fatter around the equator than a perfect sphere would be. Earth's shape is also slightly lumpy because it is composed of different materials of different densities that exert slightly different amounts of gravitational force per volume. The liquidity of a hot, newly formed planet allows heavier elements to sink down to the middle and forces lighter elements closer to the surface, a process known as planetary differentiation. This event is known as the iron catastrophe; the most abundant heavier elements were iron and nickel, which now form the Earth's core. Though the surface rocks of the Earth have cooled enough to solidify, the outer core of the planet is still hot enough to remain liquid. Energy is still being released; volcanic and tectonic activity has pushed rocks into hills and mountains and blown them out of calderas. Meteors also create impact craters and surrounding ridges. However, if the energy release from these processes halts, then they tend to erode away over time and return toward the lowest potential-energy curve of the ellipsoid. Weather powered by solar energy can also move water, rock, and soil to make the Earth slightly out of round. Earth undulates as the shape of its lowest potential energy changes daily due to the gravity of the Sun and Moon as they move around with respect to the Earth. This is what causes tides in the oceans' water, which can flow freely along the changing potential.