language-icon Old Web
English
Sign In

Magnus effect

The Magnus effect is an observable phenomenon that is commonly associated with a spinning object moving through the air or a fluid. The path of the spinning object is deflected in a manner that is not present when the object is not spinning. The deflection can be explained by the difference in pressure of the fluid on opposite sides of the spinning object. The Magnus effect is an observable phenomenon that is commonly associated with a spinning object moving through the air or a fluid. The path of the spinning object is deflected in a manner that is not present when the object is not spinning. The deflection can be explained by the difference in pressure of the fluid on opposite sides of the spinning object. The most readily observable case of the Magnus effect is when a spinning sphere (or cylinder) curves away from the arc it would follow if it were not spinning. It is often used by football players, baseball pitchers and cricket bowlers. Consequently, the phenomenon is important in the study of the physics of many ball sports. It is also an important factor in the study of the effects of spinning on guided missiles—and has some engineering uses, for instance in the design of rotor ships and Flettner aeroplanes. Topspin in ball games is defined as spin about a horizontal axis perpendicular to the direction of travel that moves the top surface of the ball in the direction of travel. Under the Magnus effect, topspin produces a downward swerve of a moving ball, greater than would be produced by gravity alone. Backspin produces an upwards force that prolongs the flight of a moving ball. Likewise side-spin causes swerve to either side as seen during some baseball pitches, e.g. slider. The overall behaviour is similar to that around an aerofoil (see lift force), but with a circulation generated by mechanical rotation rather than airfoil action. The Magnus effect is named after Heinrich Gustav Magnus, the German physicist who investigated it. The force on a rotating cylinder is known as Kutta–Joukowski lift, after Martin Kutta and Nikolai Zhukovsky (or Joukowski), who first analyzed the effect.

[ "Aerodynamics", "Condensed matter physics", "Mechanics", "Classical mechanics", "Aerospace engineering", "Flettner rotor" ]
Parent Topic
Child Topic
    No Parent Topic