An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body. An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body. It is inferred from the empirical study of natural satellites in the Solar System that they are likely to be common elements of planetary systems. The majority of detected exoplanets are giant planets. In the Solar System, the giant planets have large collections of natural satellites (see Moons of Jupiter, Moons of Saturn, Moons of Uranus and Moons of Neptune). Therefore, it is reasonable to assume that exomoons are equally common. Though exomoons are difficult to detect and confirm using current techniques, observations from missions such as Kepler have observed a number of candidates, including some that may be habitats for extraterrestrial life and one that may be a rogue planet. To date there are no confirmed exomoon detections. Although traditional usage implies moons orbit a planet, the discovery of planet-sized satellites around brown dwarfs blurs the distinction between planets and moons, due to the low mass of such failed stars. To resolve this confusion, the International Astronomical Union declared, 'Objects with true masses below the limiting mass for thermonuclear fusion of deuterium, that orbit stars or stellar remnants, are planets.' Characteristics of any extrasolar satellite are likely to vary, as do the Solar System's moons. For extrasolar giant planets orbiting within their stellar habitable zone, there is a prospect a terrestrial planet-sized satellite may be capable of supporting life. For impact-generated moons of terrestrial planets not too far from their star, with a large planet–moon distance, it is expected that the orbital planes of moons will tend to be aligned with the planet's orbit around the star due to tides from the star, but if the planet–moon distance is small it may be inclined. For gas giants, the orbits of moons will tend to be aligned with the giant planet's equator because these formed in circumplanetary disks. Planets close to their stars on circular orbits will tend to despin and become tidally locked. As the planet's rotation slows down the radius of a synchronous orbit of the planet moves outwards from the planet. For planets tidally locked to their stars, the distance from the planet at which the moon will be in a synchronous orbit around the planet is outside the Hill sphere of the planet. The Hill sphere of the planet is the region where its gravity dominates that of the star so it can hold on to its moons. Moons inside the synchronous orbit radius of a planet will spiral into the planet. Therefore, if the synchronous orbit is outside the Hill sphere, then all moons will spiral into the planet. If the synchronous orbit is not three-body stable then moons outside this radius will escape orbit before they reach the synchronous orbit. A study on tidal-induced migration offered a feasible explanation for this lack of exomoons. It showed the physical evolution of host planets (i.e. interior structure and size) plays a major role in their final fate: synchronous orbits can become transient states and moons are prone to be stalled in semi-asymptotic semimajor axes, or even ejected from the system, where other effects can appear. In turn, this would have a great impact on the detection of extrasolar satellites. The existence of exomoons around many exoplanets is theorized. Despite the great successes of planet hunters with Doppler spectroscopy of the host star, exomoons cannot be found with this technique. This is because the resultant shifted stellar spectra due to the presence of a planet plus additional satellites would behave identically to a single point-mass moving in orbit of the host star. In recognition of this, there have been several other methods proposed for detecting exomoons, including: