language-icon Old Web
English
Sign In

Intersection theory

In mathematics, intersection theory is a branch of algebraic geometry, where subvarieties are intersected on an algebraic variety, and of algebraic topology, where intersections are computed within the cohomology ring. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form.... if A and B are subvarieties of a non-singular variety X, the intersection product A · B should be an equivalence class of algebraic cycles closely related to the geometry of how A ∩ B, A and B are situated in X. Two extreme cases have been most familiar. If the intersection is proper, i.e. dim(A ∩ B) = dim A + dim B − dim X, then A · B is a linear combination of the irreducible components of A ∩ B, with coefficients the intersection multiplicities. At the other extreme, if A = B is a non-singular subvariety, the self-intersection formula says that A · B is represented by the top Chern class of the normal bundle of A in X. In mathematics, intersection theory is a branch of algebraic geometry, where subvarieties are intersected on an algebraic variety, and of algebraic topology, where intersections are computed within the cohomology ring. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. For a connected oriented manifold M of dimension 2n the intersection form is defined on the n-th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class in H2n(M, ∂M). Stated precisely, there is a bilinear form

[ "Differential algebraic equation" ]
Parent Topic
Child Topic
    No Parent Topic